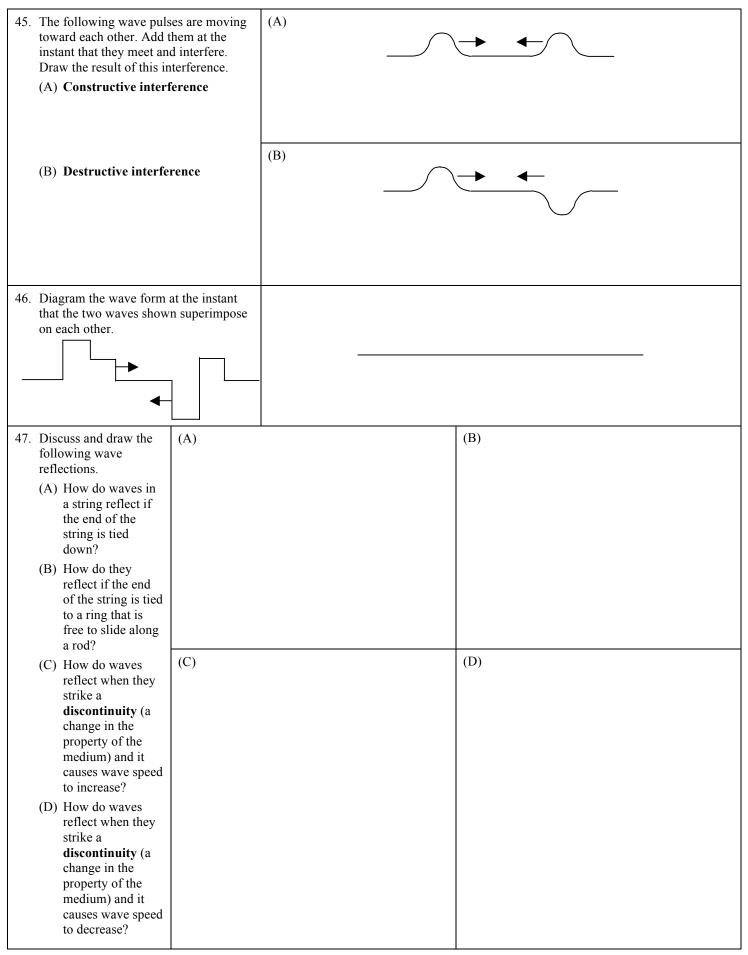
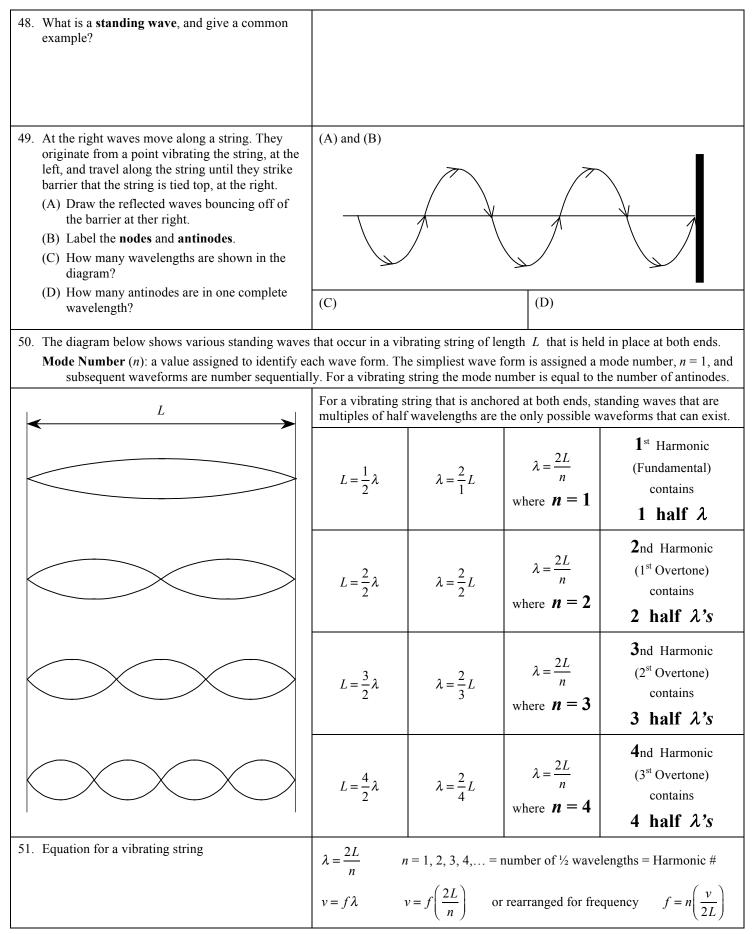
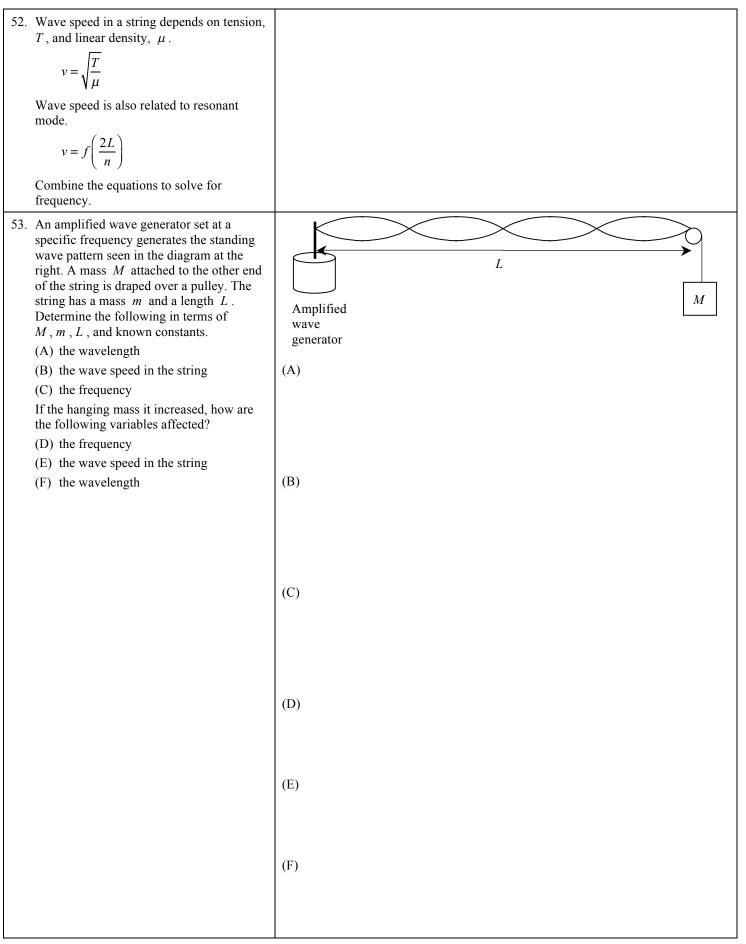
42	TRAVELING WAVES	
1.	Wave progagation (A) Source	(A)
	(A) Source (B) Disturbance	(B)
	(C) Medium	
	(D) Speed	(C)
	(E) Traveling waves(F) Mechanical waves	
	(G) Electromagnetic waves	(D)
		(E)
		(F)
		(G)
2.	Transverse Waves have the classic sinusoidal appearance. Therefore, it will be easiest to label key terms associated with measuring wave characteristics using the transverse wave.	(A)
	 (A) On the top diagram label the following: i. Equilibrium (0) ii. Amplitude (A) iii. Several wavelengths (λ) 	
	(B) How does the direction of the vibration compare to the direction that the wave travels?	(B)
	(C) What is the best example of a transverse wave?	(C)
3.	Longitudinal Waves are difficult to draw and visualize. Even though they do not have the classic sinusodal appearance they do graph sinusoidally.	(A)
	 (A) On the bottom diagram label the following: i. Compression ii. Rarefaction 	
	iii. The direction of the vibration.(B) How does the direction of the vibration	(B)
	compare to the direction that the wave?	
	(C) What is the best example of a longitudinal wave?	(C)
	(D) What are some other names for this type of wave?	(D)
4.	Wave Pulse : Sketch a wave pulse traveling along a string, with an arrow indicating the direction of motion. Label the leading and trailing edges of the pulse.	

5.	What is necessary mechanical waves					
6.	What aspect of wa does the medium c					
7.	Waves on a string string) depends on density and tension (A) How does line influence wav (B) How does stri influence wav	n. ear density re speed? ng tension	$\mu = \frac{m}{L}$ $v = \sqrt{\frac{T}{\mu}}$ (A) (B)	<i>m</i> Mass (<i>L</i> Length	(m) speed (m/s)	
8.	 speed of sound (B) How does the compare betw and solids? The speed of sound important to us, as gaseous environmed for the speed of so shown at the right. (C) Most values in constant. Whi 	atter controls the d waves? speed of sound reen gases, liquids, d in gases is we live in a ent. The equation und in a gas is n the equation are ch factor varies it affect the speed	(A) (B) where γ and k_B are constants, $v_{sound} = \sqrt{\frac{\gamma k_B T}{M}} \frac{\gamma}{\frac{k_B}{M}} = \frac{\gamma}{\frac{\gamma k_B T}{M}} \frac{\gamma}{\frac{k_B}{M}} = \frac{\gamma}{\frac{1}{2}} \frac{1}{\frac{1}{2}} \frac{\lambda}{\frac{1}{2}} \frac{\gamma}{\frac{1}{2}} \frac{\lambda}{\frac{1}{2}} \frac{\gamma}{\frac{1}{2}} \frac{\lambda}{\frac{1}{2}} \frac{\lambda}{\frac{1}$			
9.	Period and Frequency $T = \frac{2\pi}{r} = \frac{1}{r}$		<i>T</i> Period: time of one complete cycle (seconds, s)			
	·	ωf	f Frequency: nu	mber of cycl	es in one second ($1/s$, s^{-1} , H	ertz, Hz)
10.	The key in cyclic bone cycle. In one c		perio	ods	wavelengths	amplitudes
11.	Wave speed	$v = \frac{d}{t}$	v wave speed in	the medium	it is moving through (meters]	per second, m/s)
		$v = \frac{\lambda}{T}$	f Frequency: nu	mber of cycl	es in one second ($1/s$, s^{-1} , H	ertz, Hz)
	$v = f\lambda$		λ Wavelength (meters, m)			


12. An object vibrates 60 times in 3 min. The wavelength is measured as 30 cm. Determine wave speed.			
13. A wave traveling at 28 m/s has a wavelength of 16 cm. Determine the period of the vibration.			
14. A sound wave traveling in a air has a wavelength of 1.34 m.(A) Determine the frequency.(B) The sound is heard as an echo 3.0 seconds after it is emitted. How far away is the barrier that reflected the sound wave back to the source?	A) B)		
15. You see the flash of lightening and then hear the sound of thunder 2.0 seconds later. How far away is the lightening strike?			
 16. Sketch the graphs showing the relationships between wave speed, frequency, and wavelength for the following conditions. Describe the mathematical relationship between the independent and dependent variables in each graph, and note if the slope of each graph has any significance. (A) Constant Medium (B) Changing Medium, while 	(A) v	ν	fλ
(B) Changing Wedlum, while frequency is held constant(C) Changing Medium, while wavelength is held constant	(B) <i>f v</i>	ν	fλ
	(C) v f	λ	λ


43	ENERGY, POWER, AND IN	NTENSITY								
17.	What type of wave are sound waves?									
18.	What is pitch?									
19.	What is loudness?									
20.	Range of human hearing?									
21.	What is (A) Infrasound	(A)								
	(B) Audible sound(C) Ultrasound	(B)								
		(C)								
22.	For the wave types listed below sketch wave front diagrams that help to visualize invisible waves such as sound. On each diagram label one wavelength. (A) Plane waves (B) Circular waves (C) Spherical waves	(A)		(B)				(C)	(C)	
23.	Waves transmit energy . List the three ways to alter the energy of a wave.									
24.	Wave speed depends on the			v =	=	f	X	λ	Ε	
	 medium. Therefore, there are three possible types of problems. (A) <u>Constant medium</u>: State the relationships between speed, frequency, wavelength, and energy if the medium is 	(A) Constant Medium								
	 constant while other variables change. (B) <u>Changing medium, while keeping frequency constant</u>: State the relationships for this scenario. 	(B) Changing Medium (frequency held constant)								
	(C) <u>Changing medium, while</u> <u>keeping wavelength</u> <u>constant</u> : State the relationships for this scenario.	(C) Changing Medium (wavelength held constant)								
25.	The rate that waves transmit energy is								·	


26.	Intensity	(A) Sound				
	(A) What properties of sound and light are related to the intensity of each of these phenomena?	Light				
	(B) Intensity depends on the power		I Intensity (W/m ²)			
	of the sound waves and the area receiving the sound waves	(B) $I = \frac{P}{4}$	P Power (W)			
	(C) Sound waves move outward in	A	A Area (m^2)			
	all directions creating spherical wave fronts. The surface area of a sphere is $4\pi r^2$, and this can be substituted into the intensity formula.	(C) $I = \frac{P}{4\pi r^2}$	Where r is both the radius of the sphere and the distance from the source in meters.			
27.	How is intensity perceived as you move farther from a source emitting (A) plane waves?	(A)				
	(B) spherical waves?					
		(B)				
28.	A spherical sound wave is emitted by a source with a power of 20 W. What is the intensity of the sound wave when it has traveled 20 m?					
29.	When the intensity of sound is increased by 10 times, how many times is the perceived loudness of sound increased?					
30.	Threshold of hearing, I_0 , has an intensity of $I_0 = 1.0 \times 10^{-12} \text{ W/m}^2$. What does this represent?					
31.	Decibel Scale is a scale of loudness r	reflecting the logarithmic nature of perceived intensity. $\beta = (10 \text{ dB}) \log_{10} \left(\frac{I}{I_0} \right)$				
		ing as zero dB. As intensity increases by a fractor of 10, the decibal scale increases by 10 dB,				
		y of 1.0×10^{-10} W/m ² and loudness of 20 dB.				
	•	ty of 1.0×10^{-6} W/m ² and loudness of 60 dB.				
	A normal converation has a perceived		louder than a whisper.			
32.	An observer standing 1.0 m from a source of spherical sound waves moves to a location that is 10 m from the source.	(A)				
	(A) By what factor does the intensity of sound change?	(D)				
	(B) By what factor does the perceived volume change?	(B)				

44 DOPPLER EFFECT					
33. Doppler Effect	A)				
(A) What is the Doppler Effect?					
(B) What is the direction of					
motion of the object shown below?					
(C) If you are standing to the right of the diagram how will the					
sound of the approaching					
object be altered?					
(D) How about on to the left of the diagram	B)				
ulugium					
	C)				
	()				
	D)				
	,				
34. Doppler Effect Equations	f_O Frequency heard by the observer (1/s, s ⁻¹ , Hertz, Hz)				
$f_{O} = \left(\frac{v \pm v_{S}}{v \mp v_{O}}\right) f_{S}$	f_S Frequency emitted by the source (1/s, s ⁻¹ , Hertz, Hz)				
$\left(v + v_{O} \right)$	v Speed of sound (m/s)				
	v_S Speed of the source (m/s)				
	v_O Speed of the observer (m/s)				
35. Whether the source or the observer	(A)	(B)			
is moving how is frequency perceived if the distance between					
them is					
(A) Decreasing					
(B) Increasing					
36. How do you decide which signs to					
select in the equation for the Doppler effect above?					
37. A sound source is emitting a tone					
with a frequency of 256 Hz. The source has a speed of 50 m/s					
toward the observer. Determine the					
frequency heard by the observer.					
38. A sound source is emitting a tone					
with a frequency of 256 Hz. The					
observer is moving away from the source at 50 m/s Determine the					
frequency heard by the observer.					

39.	What is the motion of the sound source relative to the speed of sound in the diagrams at the right?			
40.	In diagram (C) of the previous question, what is the region where the waves are superimposing known as?			
41.	In diagram (D) of the previous question(A) What is the wake of sound trailing the source known as?(D) What do now here go it present her?	(A)		(B)
45	(B) What do you hear as it passes by? SUPERPOSITION, INTERFER	ENCE.	AND STANDING WAVES	
	Phase	LI (CL,	(A)	
	(A) When waves are " in phase " they			
	(B) "Out of phase" means that waves(C) What is significant shout heirs "190"	0 f		
	(C) What is significant about being "180 phase?"	out of		
			(B)	
			(C)	
43.	What is wave superposition ?			
44.	What is wave interference ?			

46	RESONANCE	
54.	Drivien oscillation	
55.	Natural frequency (f_0)	
56.	Driving frequency (f_{ext})	
57.	Response Curve: What is causing the extreme peak in the response curve shown below?	
	Amplitude	
58	Resonance	
59.	Resonant frequency	
60.	For the vibrating string in the previous section the possible standing waves correspond to the possible resonant modes (resonances) of the vibrating sting.	(A)
	(A) What is the simplest resonance (corresponding to $m = 1$) known as, and how is its frequency annotated?	(B)
	(B) What is the next resonance (corresponding to $m = 2$) known as,	
	and how is its frequency annotated? (C) What is the third resonance	(C)
	(corresponding to $m = 3$) known as, and how is its frequency annotated?	

61. Standing sound waves in tubes (wind instruments) are similar to those in strings (string instruments), but there are some key differnces.(A) What is the medium in a tube instrument	(A)			
 compared to the medium in a string instrument? (B) When the wave reaches the end of a string it encounters a, while a wave reaching the end of a take and of a t	(B)			
the end of a tube encounters a 62. There are two ways to diagram standing sound molecules as they vibrate. The vibration is actu vibration. However, some textbooks may instea method is used the diagrams will look exactly limit	ally left to right, d diagram the pr	but the diagrams ressure variation	represent the gra of the air molecul	phed sine wave of the
63. For the displacement method diagrams shown below(A) what part of the standing wave occurs at an	(A)			
open end of a tube?(B) what part of the standing wave occurs at a closed end of a tube?	(B)			
64. The diagram below shows various standing waves	that occur in a tub	be that is OPEN A	T BOTH ENDS.	
	For a tube OPE		DS, standing waves	s that are multiples of
	$L = \frac{1}{2}\lambda$	$\lambda = \frac{2}{1}L$	$\lambda = \frac{2L}{n}$ where $n = 1$	1 st Harmonic (Fundamental) contains 1 half λ
	$L = \frac{2}{2}\lambda$	$\lambda = \frac{2}{2}L$	$\lambda = \frac{2L}{n}$ where $n = 2$	2nd Harmonic (1 st Overtone) contains 2 half λ's
	$L = \frac{3}{2}\lambda$	$\lambda = \frac{2}{3}L$	$\lambda = \frac{2L}{n}$ where $n = 3$	 3nd Harmonic (2st Overtone) contains 3 half λ's
	$L = \frac{4}{2}\lambda$	$\lambda = \frac{2}{4}L$	$\lambda = \frac{2L}{n}$ where $\boldsymbol{n} = \boldsymbol{4}$	 4nd Harmonic (3st Overtone) contains 4 half λ's
65. Equation for a tube OPEN AT BOTH ENDS .	$\lambda = \frac{2L}{n}$	$n = 1, 2, 3, 4, \dots = 1$	number of ½ wave	lengths = Harmonic #
	$v = f\lambda$	$v = f\left(\frac{2L}{n}\right) \qquad \text{c}$	or rearranged for fro	equency $f = n \left(\frac{v}{2L} \right)$

66. The diagram below shows various standing wave				
L .			ND, standing wave ths are the only pos	s that are multiples of ssible waveforms.
	$L = \frac{1}{4}\lambda$	$\lambda = \frac{4}{1}L$	$\lambda = \frac{4L}{n}$ where $n = 1$	1 st Harmonic (Fundamental) contains 1 quarter λ
	$L = \frac{3}{4}\lambda$	$\lambda = \frac{4}{3}L$	$\lambda = \frac{4L}{n}$ where $n = 3$	2nd Harmonic (1 st Overtone) contains 3 quarter λ's
	$L = \frac{5}{4}\lambda$	$\lambda = \frac{4}{5}L$	$\lambda = \frac{4L}{n}$ where $n = 5$	3nd Harmonic (2 st Overtone) contains 5 quarter λ's
	$L = \frac{7}{4}\lambda$	$\lambda = \frac{4}{7}L$	$\lambda = \frac{4L}{n}$ where $n = 7$	 4nd Harmonic (3st Overtone) contains 7 quarter λ's
67. Equation for a tube CLOSED AT ONE END .	$\lambda = \frac{4L}{n}$	$n = 1, 2, 3, 4, \dots =$	number of ODD ¹ / ₄	a wavelengths
		$v = f\left(\frac{4L}{n}\right)$	or rearranged for fr	requency $f = n \left(\frac{v}{4L} \right)$
68. A string tied between two points is vibrating at its fundamental frequency. The speed of the waves in the string is 750 m/s and its frequency is 500 Hz. Determine the length of the string.				
69. An open tube is resonating at a fundamental frequency of 512 Hz. Determine the length of the tube.				
70. A 0.80 m long closed tube is resonating at its fundamental frequency. Determine the fundamental frequency of vibration.				

71. Draw a diagram of a sonometer and describe how it functions?	
72. Beats: How do beats occur?	
73. How is beat frequency determined?	