31 ROTATIONAL KINEMATICS

1. Compare and contrast circular motion and rotation? Address the following

- Which involves an object and which involves a system?
- Does an object/system in circular motion have any rotational characteristics?
- Does a rotating object/system have any circular motion characteristics?

2. A disk rotating through its center is shown in the diagram at the right. The instantaneous velocities for several points on the rotating disk indicated by the vector arrows, where the length of each vector indicates the speed of each point.
(A) How is speed related to the distance from the axis of rotation?
(B) All points that are the same distance from the axis have the same \qquad —, but these points all have different \qquad -.
(C) All points that lie on the same radius have the same \qquad , but they have different \qquad -
(D) Do any two points on a rotating system have the same velocity? If not explain why.
3. The disk is essentially an object/system comprised of individual points that are all in circular motion at different velocities. There is an important quantity that every point (except the point at the axis) moves through during a specific time interval.
(A) What is this key quantity?
(B) How is measured?

(D)
D)
(C) How is it related to revolutions

(A)
(B)
(C)

4. Angular Quantities
(A) Angular displacement
(B) Angular velocity
(C) Angular acceleration
(C) Angular acceleration
5. Important conversions
(A) revolutions to radians
(B) rpm to $\mathrm{rad} / \mathrm{s}$

Variable and units	Converstion to tangential quantities
(A)	(B)

Equation Comparison	Linear Motion	Rotation (system)	Circular Motion (point)
6. Default positive direction	Right and Up	Counterclockwise (ccw)	Counterclockwise (ccw)
7. Time	$t=$ elapsed time	$t=$ elapsed time	$t=$ elapsed time $T=$ time of $\boldsymbol{O} \boldsymbol{N} \boldsymbol{E}$ cycle (rev) $T=\frac{2 \pi}{\omega}=\frac{1}{f}$
8. Distance / displacement	$\Delta x=x-x_{0}$	$\Delta \theta=\theta-\theta_{0}$	$d_{\text {one cycle }}=2 \pi r \quad \Delta x=r \theta$
9. Constant speed / velocity	$v=\frac{d}{t} \quad \vec{v}=\frac{\Delta x}{t}$	$\omega=\frac{\Delta \theta}{t}$	$\nu=\frac{2 \pi r}{T} \quad \nu=r \omega$
10. Acceleration	$\begin{gathered} v_{x}=v_{0 x}+a_{x} t \\ x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\ v_{x}{ }^{2}=v_{0 x}{ }^{2}+2 a_{x}\left(x-x_{0}\right) \end{gathered}$	$\begin{gathered} \omega=\omega_{0}+\alpha t \\ \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\ \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right) \end{gathered}$	$a_{c}=\frac{\nu^{2}}{r}=\omega^{2} r \quad a=r \alpha$
11. An object in uniform circular motion of radius 4.0 m completes 10 rev in 2.0 s . Determine the (A) angular displacement (B) tangential displacement (C) angular velocity (D) tangential velocity (E) angular acceleration (F) tangential acceleration	(A) Angular displacement	(B) Tangen	splacement
	(C) Angular velocity	(D) Tangen	velocity
	(E) Angular acceleration	(F) Tangen	acceleration
12. An object at rest begins to rotate uniformly with an angular acceleration of $6.0 \mathrm{rad} / \mathrm{s}^{2}$. How many revolutions has the object completed when it reaches the point where it is spinning at 120 rpm ?			

13. An object with an initial angular velocity of $20 \mathrm{rad} / \mathrm{s}$ accelerates at $10 \mathrm{rad} / \mathrm{s}^{2}$ for 5.0 s with a radius of 3.0 m . Determine the objects (A) angular displacement (B) radial acceleration at time $t=5.0 \mathrm{~s}$	(A) Angular displacement	(B) Radial acceleration
14. An object initially at rest accelerates uniformly in a circle with radius 4.0 m for 10 s until reaching a tangential speed of $20 \mathrm{~m} / \mathrm{s}$. Determine the objects (A) final angular velocity (B) angular acceleration (C) radial acceleration at time $t=10 \mathrm{~s}$	(A) Final angular velocity	(B) Angular Acceleration
	(C) Radial acceleration	(D) Angular displacement
Kinematic Graphs	Slope	Area
15. $x-t$		
16. $\theta-t$		
17. $v-t$		
18. $\omega-t$		
19. $a-t$		
20. $\alpha-t$		

32 TORQUE AND CENTER OF GRAVITY

25. What is the relationship between tangential force, torque, tangential acceleration, and angular acceleration?
26. Net Torque
27. The sum of torque and angular acceleration is similar to the sum of linear forces and linear acceleration. Fill in the chart

What motion results when the net linear force acting on an object is equal to zero?	What motion results when the net torque acting on an object is equal to zero?
This(these) type(s) of motion can be described with what terms?	This(these) type(s) of motion can be described with what terms?
What motion results when the net linear force acting on an object is not equal to zero?	What motion results when the net torque acting on an object is not equal to zero?

28. A pulley with two different radii $r_{1}=1 \mathrm{~m}$ and $r_{2}=3 \mathrm{~m}$ is acted upon by three forces. $F_{1}=6 \mathrm{~N}$ and $F_{2}=4 \mathrm{~N}$ and F_{3} is unknown. The moment of inertia of this pulley is $I=6 \mathrm{~kg} \mathrm{~m}^{2}$

(A) Determine the magnitude of F_{3} so that the pulley remains in equilibrium.
(B) Determine the magnitude of F_{3} so that the net torque is $4 \mathrm{~N} \cdot \mathrm{~m}$.
(A)
(B)

33 MOMENT OF INERTIA

34 ROTATIONAL DYNAMICS

44. A pulley of mass $M=3.0 \mathrm{~kg}$ and radius $R=1.0 \mathrm{~m}$ has a massless string wound around it several time (like a fishing reel). A mass $m=2.0 \mathrm{~kg}$ intially at rest is suspended from one end of the string. When released it unwinds the string.

(A) Draw the FBD for the mass m and for the pulley.
(B) Key strategy
i. Sum torque for...
ii. Sum forces for...
(C) Determine the systems acceleration.
(D) Determine the tension in the sting.
(E) Determine the force exerted by the axle.
(F) Determine the angular speed of the pulley after 5.0 s .
(A)

m	
(B) (i)	(ii)
(C)	

(C)
(D)
(E)
(F)
45. An Atwood machine consists of a pulley of mass $M=4.0 \mathrm{~kg}$ and radius $R=10 \mathrm{~cm}$ and two masses $m_{1}=1.0 \mathrm{~kg}$ and $m_{2}=2.0 \mathrm{~kg}$ as shown.

A) Draw the FBD for the pulley and each mass.
(B) Determine the acceleration of the system.
(C) Determine the tension in the string attached to mass m_{2}.
(D) The pulley completes 3.0 revolutions. Determine the speed of m_{2}.
(E) Determine the force exerted by the axle.
46. A ball of mass 2.0 kg and radius 50 cm rolls 10 m along a 30° incline.

(A) Draw the FBD for the ball if the ramp is fricitonless.
(B) Draw the FBD for the ball if the ramp is rough
(C) Using force and kinematics determine the translational speed of the ball at the bottom of the incline if the incline is frictionless.
(D) Using torque, force, and kinematics determine the translational speed of the ball at the bottom of the incline when friction is present, and the ball rolls without slipping. The coefficients of friction are $\mu_{\mathrm{s}}=0.2$ and $\mu_{\mathrm{k}}=0.4$
(E) Determine the friction force acting on the ball.
(F) What is the significance of the phrase "without slipping"?
(A) Frictionless
(C) Speed if incline is frictionless
(D) Speed if incline has friction and ball rolls without slipping
(E) Friction that allows ball to roll without slipping
(F) Significance of the phrase "without slipping"

35 STATICS

47. The key to static equilibrium problems
(A)
(B) is that
(A) the sum of torque is
(B) and the sum of forces is
48. A common problem is the simple tetter totter. At one end of the tetter totter a 30 kg child sits
2.0 m from the fulcrum. Determine the position of a 40 kg child on the other end that will keep the tetter totter in equilibrium.
49. Another application is a mobile. Three masses are suspended by horizontal rods and vertical strings. $m_{2}=20 \mathrm{~g}$, $r_{1}=10 \mathrm{~cm}, r_{2}=20 \mathrm{~cm}, r_{3}=15 \mathrm{~cm}$, and $r_{4}=10 \mathrm{~cm}$. Determine the mass m_{1} that will keep the system is equilibrium.

50. A 10 kg plank with a length of 3.0 m is placed between two triangular stands and a 20 kg mass is placed on the plank. The center of the mass is 1.0 m from the left edge of the plank. The apparatus is illustrated in the diagram below. Determine the support forces provided by the triangular stands.

51. One end of a rod is attached to a wall and able to pivot at the attachment point with the wall. A string is attached to and holds up the other end of the rod. The rod has a mass of 5.0 kg and a length of 2.0 m . The string makes an angle of 30° with the rod.

(A) Determine the tension in the string.
(B) Determine the force acting at the axis.

The string is cut
(C) Determine the angular acceleration of the rod at the instant the string is cut
(A)
(B)
(C)

36 WORK AND ENERGY

53. Rotational Kinetic Energy		$K=\frac{1}{2} I \omega^{2}$	

56. Determine the kinetic energy of a sphere, $m=3.0 \mathrm{~kg}$ and $r=2.0 \mathrm{~m}$, rotating at a constant 30 rpm .			
57. A 1.0 kg ball with rolling along a surface with a speed of $4.0 \mathrm{~m} / \mathrm{s}$. Determine the ball's kinetic energy.			
58. Work	$W=\Delta E$	W	Work (J)
		ΔE	Change in energy (J)
59. Work kinetic energy theorem	$W_{\text {net }}=\Delta K$	$W_{n e t}$	Net work (J)
		ΔK	Change in kinetic en
60. A sphere with a mass of 3.0 kg and radius of 2.0 m is initially rotating at 30 rpm's. How much work is done on the sphere if its rotational frequency is increased to 50 rpm's.			
61. A 1.0 kg ball with a radius of 0.2 m is rolling along a surface with a speed of $4.0 \mathrm{~m} / \mathrm{s}$. The ball is accelerated to a speed of $10 \mathrm{~m} / \mathrm{s}$. Determine the work done on the ball during the acceleration.			

62. One end of a rod is attached to a wall and able to pivot at the attachment point with the wall. A string is attached to and holds up the other end of the rod. The rod has a mass of 5.0 kg and a length of 2.0 m . The string makes an angle of 30° with the rod. The string is then cut.

Determine the speed of a point at the end of the rod at the instant it strikes the wall.

Initial conditions (at instant string is cut)
\qquad

Final Conditions (rod strikes wall)

63. Why is force and kinematics not a valid way to solve for the speed of the rod in this type of problem?
64. A ball of mass 2 kg and radius 50 cm is placed on a 10 m long a 30° incline.
(A) Using conservation of energy determine the translational speed of the ball at the bottom of incline if the inlcine is frictionless.
(B) Using conservation of energy determine the translational speed of the ball if it is rolling down the incline without slipping.
65. Friction in rolling problems is very unusual. Explain friction's role and whether or not there is an energy loss due to the work of friction in each of the following cases.
(A) No friction
(B) No slipping
(C) Slipping
(A)
(B)
(A)
(B)
(C)

37 ANGULAR MOMENTUM

71. Two 5.0 kg masses are located at the ends of a 2.0 m long bar of negligible mass rotating at $4.0 \mathrm{rad} / \mathrm{s}$ about the center of the bar. The length of the bar decreases to 1.0 m . Determine the new speed of the apparatus.
72. A 1000 kg satellite is in an elipitcal orbit about Earth. At its closest approach to Earth it is a distance of $1.5 \times 10^{7} \mathrm{~m}$ from the center of Earth. At this instant the satellite has a speed of $5000 \mathrm{~m} / \mathrm{s}$. Six months later the satellite reaches its greatest distance from Earth, $2.0 \times 10^{7} \mathrm{~m}$ from the center of Earth. Determine the satellites speed at this instant.
73. A rod of mass 1.0 kg and with a length of 1.0 m is rotated through an axis at the end of the rod. The rod is swung horizontally with an angular speed of $6.0 \mathrm{rad} / \mathrm{s}$. It comes into contact with a stationary sphere, mass 0.10 kg . The sphere contacts the rod at a point 0.20 m from the end of the rod. After the collision the rod continues to rotate forward with an angular speed of $3.0 \mathrm{rad} / \mathrm{s}$. What is the velocity of the sphere as a result of the collision?
74. What is conserved in collisions?
75. What does conservation of linear momentum solve for?
76. What does conservation of angular momentum solve for

