31	ROTATIONAL KIN	EMATICS		
31 1. • •	ROTATIONAL KIN Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have any rotational characteristics? Does a rotating object/system have any circular motion characteristics? A disk rotating through its center is shown in the diagram at the right. The instantaneous velocities for several points on			(A)
	 the rotating disk indicated by the vector arrows, where the length of each vector indicates the speed of each point. (A) How is speed related to the distance from the axis of rotation? (B) All points that are the same distance from the axis have the same, but these points all have different 			(B) (C)
	 (C) All points that lie on the same radius have the same, but they have different (D) Do any two points on a rotating system have the same velocity? If not explain why. 	(D)		
3.	The disk is essentially an object individual points that are all in o different velocities. There is an every point (except the point at during a specific time interval.	/system comprised of circular motion at important quantity that the axis) moves through	(A) (B)	
	(A) What is this key quantity?(B) How is measured?(C) How is it related to revolution	ions	(C)	
4.	Angular Quantities(A) Angular displacement(B) Angular velocity(C) Angular acceleration		and units	Converstion to tangential quantities
5.	Important conversions (A) revolutions to radians (B) rpm to rad/s	(A)		(B)

Equation Comparison	Linear Motion	Rotation (system)	Circular Motion (point)
6. Default positive direction	Right and Up	Counterclockwise (ccw)	Counterclockwise (ccw)
7. Time	t = elapsed time	t = elapsed time	t = elapsed time T = time of ONE cycle (rev) $T = \frac{2\pi}{\omega} = \frac{1}{f}$
8. Distance / displacement	$\Delta x = x - x_0$	$\Delta \boldsymbol{\theta} = \boldsymbol{\theta} - \boldsymbol{\theta}_{_{0}}$	$d_{one \ cycle} = 2\pi r \qquad \Delta x = r\theta$
9. Constant speed / velocity	$v = \frac{d}{t}$ $\vec{v} = \frac{\Delta x}{t}$	$\omega = \frac{\Delta \theta}{t}$	$v = \frac{2\pi r}{T} \qquad v = r\omega$
10. Acceleration	$v_{x} = v_{0x} + a_{x}t$ $x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2}$ $v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0})$	$\omega = \omega_0 + \alpha t$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha \left(\theta - \theta_0\right)$	$\boxed{a_c = \frac{v^2}{r}} = \omega^2 r \qquad a = r \alpha$
 11. An object in uniform circular motion of radius 4.0 m completes 10 rev in 2.0 s. Determine the (A) angular displacement (B) tangential displacement (C) angular velocity (D) tangential velocity (E) angular acceleration (F) tangential acceleration 	 (A) Angular displacement (C) Angular velocity (E) Angular acceleration 	(B) Tangentia (D) Tangentia (F) Tangentia	l displacement
 12. An object at rest begins to rotate uniformly with an angular acceleration of 6.0 rad/s². How many revolutions has the object completed when it reaches the point where it is spinning at 120 rpm? 			

V		
13. An object with an initial angular velocity of 20 rad/s accelerates at 10 rad/s ² for 5.0 s with a radius of 3.0 m. Determine the objects (A) angular displacement (B) radial acceleration at time t = 5.0 s	(A) Angular displacement	(B) Radial acceleration
 14. An object initially at rest accelerates uniformly in a circle with radius 4.0 m for 10 s until reaching a tangential speed of 20 m/s. Determine the objects (A) final angular velocity (B) angular acceleration (C) radial acceleration at time t = 10 s (D) angular displacement 	(A) Final angular velocity	(B) Angular Acceleration
	(C) Radial acceleration	(D) Angular displacement
Kinematic Graphs	Slope	Area
15. $x - t$		
16. $\theta - t$		
17. $v - t$		
18. $\omega - t$		
19. $a-t$		
20. $\alpha - t$		

32	TORQUE ANI	D CENTER OF GRA	VIT	ſΥ
21.	Torque : A force applied at a distance from the center of mass of an object that causes rotation.	$\vec{\tau} = \vec{r} \times \vec{F}$ $\tau = r_{\perp}F = rF\sin\theta$	$\vec{\tau}$ \vec{r} \vec{F}	Torque: The rotational equivalent of force (N•m) Moment Arm : The distance from the axis of rotation to the point where the force creating the torque is applied (the tail of the force vector). (m) Force creating the torque (N)
22.	In rotation some objects will be round having a radius, R . The length of the moment arm, r , often appears the be a radius as well. What exactly is the moment arm, and how will we distinguish it from an ordinary radius?			
23.	The scalar version of the equation, $\tau = rF \sin \theta$, is used to solve rotation problems. In the scenarios depicted at the right a disk with a radius $R = 5$ m is acted upon by an		~	
	 applied force of 10 N. For each scenario determine the (A) length of the moment arm, <i>r</i>. (B) the angle, <i>θ</i>. (C) the applied torque, <i>τ</i>. 	(A) (B)		
		(C)		
24.	Turning a bolt. What is the advantage to using a wrench when turning a bolt?	F		

25.	What is the relationship between tangential force, torque, tangential acceleration, and angular acceleration?			
26.	Net Torque			
27.	The sum of torque and angular acceleration is similar to the sum of linear forces and linear acceleration. Fill in the chart	What motion results when the net linear force acting on an object is equal to zero?		What motion results when the net torque acting on an object is equal to zero?
		This(these) type(s) of mo with what terms?	tion can be described	This(these) type(s) of motion can be described with what terms?
		What motion results when acting on an object is not	n the net linear force equal to zero?	What motion results when the net torque acting on an object is not equal to zero?
28.	A pulley with two difference $r_2 = 3$ m is acted upon and $F_2 = 4$ N and F_3 is of inertia of this pulley	prent radii $r_1 = 1$ m and by three forces. $F_1 = 6$ N s unknown. The moment is $I = 6$ kg m ²	(A)	
		F_2 F_3 F_2	(B)	
	(A) Determine the mag pulley remains in e(B) Determine the mag net torque is 4 N•m	paitude of F_3 so that the equilibrium. equilibrium of F_3 so that the n.		

29. Gravitational Torque				1	
	axis r	od		axis	rod
				I	
20 Contar of Gravity					
30. Center of Gravity					
31. How can the center					
of gravity be found					
experimentally?					
32. Center of Gravity	Σmr	r _{cm}	distance from (0,0) to c	enter of mass (m)	
	$r_{cm} = \frac{\Delta m}{\Sigma m}$	т	mass (kg)		
	2	r	distance from (0,0) to e	ach mass (m)	
33. Determine the center of gra	vity for the following				
arrangement. The rod conne	ecting the masses is				
massless and the masses are	e 2 m apart.				
(2 kg)	$-\left(6 \text{ kg} \right)$				
34. Determine the center of ma	ss for the following				
shown below is separated b	v 1 m. Each mass is				
perfectly centered at an inte	rsection of the grids.				
	(4 kg)				
	(T Kg)				
J S Kg					
	kg				
35 Difference hetween		1			
center of mass and					
center of gravity					

33	33 MOMENT OF INERTIA				
36.	Moment of Inertia The inertia of a rotating object.	Similar to mass <i>m</i> in linear motion. In linear motion an object with more mass has more inertia. More inertia means it is more difficult to accelerate. If it is more difficult to accelerate, then it is more difficult to change its velocity (speed it up, slow it down, or change its direction). If an mass has a greater moment (momentum) of inertia I , then it is more difficult to give it angular acceleration α . If it is more difficult to give it angular acceleration, then it is more difficult to change its angular velocity ω . As a result it is more difficult to rotate if it is standing still and more difficult to speed up, slow, or stop the objects rotation if it is already rotating.			
37.	For most rotating objects the	Ноор	$I = MR^2$		
	moment of inertia is solved using integral calculus. In this course the moment of inertia	Disc / cylinder / pulley	$I = \frac{1}{2}MR^2$	M = mass of object	
	objects. The moments of inertia for some commonly encountered objects are given	Solid sphere	$I = \frac{2}{5}MR^2$	R = radius of object	
	at the right.	Hollow sphere	$I = \frac{2}{3}MR^2$		
		Rod rotating thru center of mass	$I = \frac{1}{12}ML^2$	M = mass of rod	
		Rod rotating about one end	$I = \frac{1}{3}ML^2$	L = length of rod	
38.	For objects in circular motion (orbiting a central point) the moment of inertia can be	$I = \sum mr^2$	I Moment of Inertia (kg·m ²)		
			<i>m</i> Mass of object in circular motion (kg)		
39.	Earth has a mass of 6.0×10^{24} kg and a radius of 6.4×10^{6} m. Earth is an average distance from the sun of 1.5×10^{6} m. Determine the moment of inertia of Earth's (A) rotation (B) revolution	(A)			
40	Determine the moment of inert	(B)			
40.	body. The rods connecting the solution 1 kg 2 kg 1 m 3 m 2 m 1 kg	spheres are massless.			

$\Sigma \tau$ Net torque, or sum of torque (N•m)
I Moment of inertia $(kg \cdot m^2)$
α Angular acceleration (m/s ²)
(A)
(B)
(C)
adius (A) ge
k. int at
the 0 (B)
t the
3
(C)
(D)
(E)

34 ROTATIONAL DYNAMIC	S	
44. A pulley of mass $M = 3.0$ kg and radius $R = 1.0$ m has a massless string wound around it several time (like a fishing reel). A mass $m = 2.0$ kg intially at rest is suspended from one end of the string. When released it unwinds the string.	(A)	m
М	(B) (i)	(ii)
m	(C)	
 (A) Draw the FBD for the mass <i>m</i> and for the pulley. (B) Key strategy Sum torque for Sum forces for (C) Determine the systems acceleration 	(D)	
 (D) Determine the tension in the sting. (E) Determine the force exerted by the axle. (F) Determine the angular speed of the pulley after 5.0 s. 	(E)	
	(F)	

AP Physics 1		GN04: Rotation
46. A ball of mass 2.0 kg and radius 50 cm rolls 10 m along a 30° incline.	(A) Frictionless	(B) Rough
(A) Draw the FBD for the	(C) Speed if incline is frictionless	
ball if the ramp is fricitonless.(B) Draw the FBD for the hall if the ramp is rough		
 (C) Using force and kinematics determine the translational speed of the ball at the bottom of the incline if the incline is 		
 frictionless. (D) Using torque, force, and kinematics determine the translational speed of the ball at the bottom of the incline when friction is present, and the ball rolls without slipping. The coefficients of friction are μ_s = 0.2 and μ_k = 0.4 (E) Determine the friction force acting on the ball. (F) What is the significance of the phrase "without slipping" ? 	(D) Speed if incline has friction and ball rolls wi	ithout slipping
	(E) Friction that allows ball to roll without slipping	ing
	(F) Significance of the phrase "without slipping"	,

.

A DTAK

D

35	STATICS		
47.	The key to static equilibrium problems is that (A) the sum of torque is (B) and the sum of forces is	(A)	(B)
48.	A common problem is the simple tetter totter. At one end of the tetter totter a 30 kg child sits 2.0 m from the fulcrum. Determine the position of a 40 kg child on the other end that will keep the tetter totter in equilibrium.		
49.	Another application is a mobile. Three masses are suspended by horizontal rods and vertical strings. $m_2 = 20$ g, $r_1 = 10$ cm, $r_2 = 20$ cm, $r_3 = 15$ cm, and $r_4 = 10$ cm. Determine the mass m_1 that will keep the system is equilibrium.		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
50.	A 10 kg plank with a length of 3.0 m is placed between two triangular stands and a 20 kg mass is placed on the plank. The center of the mass is 1.0 m from the left edge of the plank. The apparatus is illustrated in the diagram below. Determine the support forces provided by the triangular stands.		

51. One end of a rod is attached to a wall a able to pivot at the attachment point w the wall. A vertical string is attached to and holds up the other end of the rod. Trod has a mass of 5.0 kg and a length of 2.0 m.	nnd ith o The axis ro of e	od	(A) Which part of the rod can be set as the pivot point in order to sum the torques acting on the rod?
(B) Mark a pivot point at the left end of the rod, and draw the forces causing torque and their associated moment arms on the diagram of the rod below.	(C) Mark a pivot poir rod, and draw the and their associat the diagram of the	It at the left end of the forces causing torque ed moment arms on e rod below.	(D) Draw the FBD of all the linear forces acting on the rod
(E) Sum the torques about the left end.	(D) Sum the torques a	bout the right end.	(E) Sum the linear forces.
(F) <u>The string is now cut</u> . How does this change the problem?	(G) Draw the new FB	D for the rod	1
		I	
(H) Determine the angular acceleration of t the string is cut.	the rod at the instant	(I) Can this accelera while the rod is s	tion be used to find the speed of the rod winging downward?

52. One end of a rod is attached to a wall and able to pivot at the attachment point with the wall. A string is attached to and holds up the other end of the rod. The rod has a mass of 5.0 kg and a length of 2.0 m. The string makes an angle of 30° with the rod.	(A)
Sung	
axis rod 30°	(B)
(A) Determine the tension in the string.	
(B) Determine the force acting at the axis.	
The string is cut	(C)
(C) Determine the angular acceleration of the rod at the instant the string is cut	
36 WORK AND ENERGY	
53. Rotational Kinetic Energy	K_{rot} Rotational kinetic energy (J)
	$K = \frac{1}{2}I\omega^2$ <i>I</i> Moment of inertia (kg•m ²)
	ω Angular velocity (rad/s)
54. Translational Kinetic Energy	<i>K_{trans}</i> Translational kinetic energy (J)
	$K = \frac{1}{2}mv^2$ Inertia, mass (kg•m ²)
	v Translational velocity (m/s)
55. There are now two types of kinetic (A) energy. How can you tell when to	
(A) only translational kinetic energy (B)	
(B) only rotational kinetic energy	
(C) both translational kinetic energy (C)	
and rotational kinetic energy	

AP Physics 1 56. Determine the kinetic energy of a sphere, m = 3.0 kg and r = 2.0 m, rotating at a constant 30 rpm. 57. A 1.0 kg ball with rolling along a surface with a speed of 4.0 m/s. Determine the ball's kinetic energy. 58. Work WWork (J) $W = \Delta E$ ΔE Change in energy (J) W_{net} 59. Work kinetic Net work (J) $W_{net} = \Delta K$ energy theorem ΔK Change in kinetic energy (J) 60. A sphere with a mass of 3.0 kg and radius of 2.0 m is initially rotating at 30 rpm's. How much work is done on the sphere if its rotational frequency is increased to 50 rpm's. 61. A 1.0 kg ball with a radius of 0.2 m is rolling along a surface with a speed of 4.0 m/s. The ball is accelerated to a speed of 10 m/s. Determine the work done on the ball during the acceleration.

62. One end of a rod is attached to a wall Final Conditions (rod strikes wall) Initial conditions (at instant string is cut) and able to pivot at the attachment point with the wall. A string is attached to and holds up the other end of the rod. The rod has a mass of 5.0 kg and a length of 2.0 m. The string makes an angle of 30° with the rod. The string is then cut. string axis 30[°] rod Determine the speed of a point at the end of the rod at the instant it strikes the wall. 63. Why is force and kinematics not a valid way to solve for the speed of the rod in this type of problem?

64.	 A ball of mass 2 kg and radius 50 cm is placed on a 10 m long a 30° incline. (A) Using conservation of energy determine the translational speed of the ball at the bottom of incline if the inlcine is frictionless. (B) Using conservation of energy determine the the determine the deter	(A) (B)
	translational speed of the ball if it is rolling down the incline without slipping.	
65.	Friction in rolling problems is very unusual. Explain friction's role and whether or not there is an energy loss due to the work of friction in each of the following cases.	(A)
	(A) No friction(B) No slipping(C) Slipping	(B)
		(C)

37 ANGULAR MOMENTUM				
66. Angular Momentum	$I - I\omega$	<i>L</i> Angular momentum (kg·m ² /s)	ΔL	Change in angular momentum $(kg \cdot m^2/s)$
	$L = I\omega$	I Moment of inertia $(kg \cdot m^2)$	τ	Applied torque (m·N)
	$L = r_{\rm c} m v$	ω Angular velocity (rad/s)	Δt	Elapsed time (s)
	T	<i>r</i> Distance from axis of rotation (m)		
	$\Delta L = \tau \Delta t$	<i>m</i> Object mass (kg)		
		v Tangential velocity (m/s)		
67. Determine the angular momentum for a sphere of mass 3.0 kg and radius 1.0 m that is rotating at 20 rad/s.				
68. A 20 kg child is riding 4.0 m from the axis of rotation of a merry go round. The merry go round completes 10 rotions in 40 s. Determine the angular momentum of the child.				
69. A torque of 20 m·N is applied to a rotating disk for 30 s. Determine the change in angular momentum.				
70. Conservation of angular momentum can be solved several ways. Explain when to use each of the following versions of the conservation of angular momentum equation.	$I_0 \omega_0 = I \omega$			$r_0 m v_0 = r m v$
		$I_0 \omega_0 = rmv$		$r_0 m v_0 = I \omega$

71.	Two 5.0 kg masses are located at the ends of a 2.0 m long bar of negligible mass rotating at 4.0 rad/s about the center of the bar. The length of the bar decreases to 1.0 m. Determine the new speed of the apparatus.	
72.	A 1000 kg satellite is in an elipitcal orbit about Earth. At its closest approach to Earth it is a distance of 1.5×10^7 m from the center of Earth. At this instant the satellite has a speed of 5000 m/s. Six months later the satellite reaches its greatest distance from Earth, 2.0×10^7 m from the center of Earth. Determine the satellites speed at this instant.	
73.	A rod of mass 1.0 kg and with a length of 1.0 m is rotated through an axis at the end of the rod. The rod is swung horizontally with an angular speed of 6.0 rad/s. It comes into contact with a stationary sphere, mass 0.10 kg. The sphere contacts the rod at a point 0.20 m from the end of the rod. After the collision the rod continues to rotate forward with an angular speed of 3.0 rad/s. What is the velocity of the sphere as a result of the collision?	
74.	What is conserved in collisions?	
75.	What does conservation of linear momentum solve for?	
76.	What does conservation of angular momentum solve for	