38	GRAVITY		
1.	Long range forces (field forces)		
2.	Gravity		
3.	Gravity Field		
4.	Force of Gravity		
5.	Factors in fluencing the magnitude of the gravity field and the magnitude of the force of gravity.		
6.	Surface gravity		
7.	Agent and object and the conventions for which is which in most problems.		
8.	Surface vs. Space	Surface Gravity	Gravity in Space
	(A) Draw gravity field vectors for each scenario		М
		ground	
	(B) Uniform or non- uniform?		
	(C) How is the magnitude of the field determined in each case (equation, etc.)?		
	(D) Universal gravity constant		
	(E) What does the variable r represent, and how is it measured?		

9. Surface vs. Space	Sur	face Gravity	Gravity in Space	
 (A) A mass m is added to each scenario. Draw the force of gravity acting on the object in each case at the right. 		ground	M	m
(B) What equations can be used to determine the force of gravity in each case?				
(C) What does the variable <i>r</i> represent, and how is it measured?				
10. Point P is located in a $d = 1.0 \times 10^6$ m above planet that has a radius mass of this planet is R	space a distance the surface of a s of 2.0×10^6 m. The $M = 3.0 \times 10^{24}$ kg.	(A)		
(A) Determine the sur planet	face gravity of this	(B)		
 (B) Determine the strafield at point <i>P</i>. A space probe with a rinserted into an orbit tipoint <i>P</i>. Calculate the the instant that the spathrough point <i>P</i>. (C) Determine the for Newton's Law of Gravitation. 	ength of the gravity nass of 400 kg is hat passes through following values at ce probe is passing ce of gravity using Universal	(C) (D)		
(D) Determine the for $F_g = mg$.	ce of gravity using			

11. Two objects $m_1 = 70$ kg and $m_2 = 60$ kg are separated by 0.60 m. Determine the force of gravity of the 70 kg object on the 60 kg object?	
12. Inverse Square Law	
13. The mass of a planet doubles. What is the effect on the gravity field, g , and the force of gravity, F_g , at a point in space near the planet?	
14. A star's diameter doubles. What is the effect on the gravity field, g , and the force of gravity, F_g , at a point in space near the star?	
15. A star loses half of it mass while its diameter doubles. What is the effect on the gravity field, g , and the force of gravity, F_g , at a point in space near the star?	
16. When two masses such as Earth and Moon attract each other, how does the force acting on one planet compare to the force acting on the other?	
17. The radius of Mars is half that of the Earth. Mars has one-tenth the mass of the Earth. Determine the strength of the gravity field on Mars.	
18. A star grows into a red giant. The new radius is 1000 times greater than the old radius. What will happen to the strength of the gravity field at the stars surface?	

39 ORBITS	
19. What is the force of gravity acting on a 1000 kg spacecraft located half way between Earth and the Moon.	
 20. Orbital Speed (A) Determine the orbital speed of a spacecraft of mass <i>m</i> in a circular orbit of radius <i>r</i> about a planet of mass <i>M</i> in terms of the given quantities and known constants. (B) The mass of Earth is approximately 6 × 10²⁴ kg. The radius of Earth is approximately 6 × 10⁶ m. Determine the orbital speed of a 1000 kg spacecraft that orbiting one Earth radii above the surface of Earth. 	(A) (B)

21.	Geosynchronous Orbits	(A)
	(A) Define(B) What is the period	(B)
	of a geosynchronous orbit?	(C)
	 (C) Determine the orbital radius of a spacecraft of mass <i>m</i> in a circular orbit of radius <i>r</i> about a planet of mass <i>M</i> in terms of the given quantities and known constants. (D) Determine the distance that a geosynchronous satellite must be positioned above the surface of Earth using the values for Earth mass and radius from the previous 	(D)
	problem.	
22.	Kepler's First Law	
23.	Kepler's Second Law	
24.	Kepler's Third Law	

 25. Conservation in elliptical orbit. (A) What equation is used for the gravitational potential energy in space, and where is the zero point for this energy? 	(A)	
 (B) Conservation of energy in elliptical orbits (C) Conservation of angular momentum in elliptical orbits. 	(B)	
	(C)	
26. Escape speed in circula	r orbits.	

40 SIMPLE HARMONIC MOTION		
27. Oscillations	(A)	
(A) Are caused by(B) What does SHM stand for?	(B)	
 (C) Which equations, encountered previously, can be used to determine the restoring force and potential energy for an object in simple 	(C)	
(D) What objects can these equations be applied to?	(D)	
(E) What variable depicts displacement?		1
(F) What is the maximum displacement of an oscillator also known as?	(E)	(F)
 28. Period (A) Define (B) General formula (C) Period of a spring 	(A)	(B)
(c) Fende of a spring formula(D) What does the period of a spring depend on?	(C)	(D)
29. What affects the period of a spring?		
30. What affects the period of a pendulum?		
31. How does doubling the mass affect the period of an oscillating spring?		
32. What mass is needed to double the period of an oscillating spring?		
33. How does doubling the mass affect the period of an oscillating spring?		
34. An object completes 20 cycles in 5.0 seconds. Determine the period.		

35. A 500 g mass is suspended from a spring and stretches the spring 20 cm to its equilibrium position. The spring is then stretched an additional 10 cm and then released from rest.	(A)
(A) Determine the spring	(B)
(B) Determine the maximum speed of the mass during	
the oscillation.	
of the spring's oscillations.	
	(C)
36. A pendulum with a length of 50 cm is displaced through an	(B)
(A) Determine the maximum	
speed reached by the pendulum bob during the	
(B) Determine the frequency	
of the oscillation	
	(C)
27 A popululum is here alt to	
distant planet. The string of	
until the frequency of the	
pendulums swing is 1.0 cycle per second. The length of the	
string is 2.5 m. Determine the	
of gravity for this planet.	

40.	Using the formula for the period of a spring explain which variables should be graphed to obtain a linear graph that can be used to determine the spring constant.
41.	Using the formula for the period of a pendulum explain which variables should be graphed to obtain a linear graph that can be used to determine the gravity in space or on a planet that is different from Earth.