38 GRAVITY

1. Long range forces (field forces)		
2. Gravity		
3. Gravity Field		
4. Force of Gravity		
5. Factors in fluencing the magnitude of the gravity field and the magnitude of the force of gravity.		
6. Surface gravity		
7. Agent and object and the conventions for which is which in most problems.		
8. Surface vs. Space	Surface Gravity	Gravity in Space
(A) Draw gravity field vectors for each scenario	ground	M
(B) Uniform or nonuniform?		
(C) How is the magnitude of the field determined in each case (equation, etc.)?		
(D) Universal gravity constant		
(E) What does the variable r represent, and how is it measured?		

| 11. Two objects $m_{1}=70$ kg and |
| :--- | :--- |
| $m_{2}=60$ kg are separated by |
| 0.60 m. Determine the force |
| of gravity of the 70 kg object |
| on the 60 kg object? | (

39 ORBITS

19. What is the force of gravity acting on a 1000 kg
spacecraft located half way between Earth and the Moon.
20. Orbital Speed
(A) Determine the orbital speed of a spacecraft of mass m in a circular orbit of radius r about a planet of mass M in terms of the given quantities and known constants.
(B) The mass of Earth is approximately $6 \times 10^{24} \mathrm{~kg}$. The radius of Earth is approximately $6 \times 10^{6} \mathrm{~m}$. Determine the orbital speed of a 1000 kg spacecraft that orbiting one Earth radii above the surface of Earth.
(A)
(B)

21. Geosynchronous Orbits (A) Define (B) What is the period of a geosynchronous orbit? (C) Determine the orbital radius of a spacecraft of mass m in a circular orbit of radius r about a planet of mass M in terms of the given quantities and known constants. (D) Determine the distance that a geosynchronous satellite must be positioned above the surface of Earth using the values for Earth mass and radius from the previous problem.	(A)
	(B)
	(D)

22. Kepler's First Law
23. Kepler's Second Law
24. Kepler's Third Law

GN05: Gravity and Oscillations

25. Conservation in elliptical orbit.
(A) What equation is used for the gravitational potential energy in space, and where is the zero point for this energy?
(B) Conservation of energy in elliptical orbits
(C) Conservation of angular momentum in elliptical orbits.
(C)
26. Escape speed in circular orbits.

40 SIMPLE HARMONIC MOTION

27. Oscillations	(A)	
What does SHM stand	(B)	
	(C)	
(C) Which equations,		
harmonic motion?	(D)	
(D) What objects can these equations be applied to?		
(E) What variable depicts		
(F) What is the maximum displacement of an oscillator also known as?	(E)	(F)
28. Period (A) Define (B) General formula (C) Period of a sprin formula	(A)	
	(C)	(D)
(D) What does the period of a spring depend on?		
29. What affects the period of a spring?		
30. What affects the period of a pendulum?		
31. How does doubling the mass affect the period of an oscillating spring?		
32. What mass is needed to double the period of an oscillating spring?		
33. How does doubling the mass affect the period of an oscillating spring?		
34. An object completes 20 cycles in 5.0 seconds. Determine the period.		

35. A 500 g mass is suspended from a spring and stretches the spring 20 cm to its equilibrium position. The spring is then stretched an additional 10 cm and then released from rest. (A) Determine the spring constant. (B) Determine the maximum speed of the mass during the oscillation. (C) Determine the frequency of the spring's oscillations.	(A)
	(C)
36. A pendulum with a length of 50 cm is displaced through an angle of 37°. (A) Determine the maximum speed reached by the pendulum bob during the oscillation. (B) Determine the frequency of the oscillation	(B)
	(C)
37. A pendulum is brought to a distant planet. The string of the pendulum is adjusted until the frequency of the pendulums swing is 1.0 cycle per second. The length of the string is 2.5 m . Determine the magnitude of the acceleration of gravity for this planet.	

41 GRAPHING OSCILLATIONS

38. The period and frequency of an oscillating object displaced a distance $x_{\max }$ will be identical to the period and frequency of an object in circular motion with a radius $R=x_{\text {max }}$.
A Amplitude, is the maximum displacement of the oscillator: $A=x_{\text {max }}=R$
x The displacement, x, of an oscillating object is the same as the x-component of the radius line, R_{x}, of the corresponding circular motion: $R_{x}=x=A \cos \Delta \theta$

$$
x=A \cos \Delta \theta
$$

For uniform circular motion: $\Delta \theta=\omega t$
$x=A \cos (\omega t)$
The angular velocity is related to both period and frequency $\quad T=\frac{2 \pi}{\omega}=\frac{1}{f}$
Which rearranges into $\omega=2 \pi f$
$x=A \cos (2 \pi f t)$

(A) The spring above is initially stretched to the right and released from rest. Complete the position-time graph for the oscillation.
$x_{(t)}$

(B) Sketch the corresponding velocity-time graph for this oscillation.

39. Analyze the following graph

(A) Determine the amplitude
(B) Determine the period (B) Determine the period ,
40. Using the formula for the period of a spring explain which variables should be graphed to obtain a linear graph that can be used to determine the spring constant.
41. Using the formula for the period of a pendulum explain which variables should be graphed to obtain a linear graph that can be used to determine the gravity in space or on a planet that is different from Earth.

