Assignment 11	NEWTON'S LAWS		
1. Force			
2. Object			
3. Agent			
4. Contact force			
5. Long range force			
6. Common forces	Define	Variable	Vector diagram
(A) Weight			
(B) Tension			
(C) Normal force			
(D) Friction			
(E) Drag (air resistance)			
(F) Applied Force			<u>}</u>

AP Physics 1	Physics 1 GN02: Dyna			
 Free Body Diagram (FBD). A simple diagram showing all the force vectors acting on an object. 	 (A) A sled pulled horizontally along a rough surface by rope inclined at an angle of 30°. Air resistance is negligible. 	(B) A block of wood sliding down a rough incline.		
8. Objects and systems				
9. Distinguish between external and internal forces				
10. Net force				
11. Mass				
12. Newton's first law of motion				
 13. Newton's second law of motion (A) Statement of the law in words (B) Expressed as an equation 	(A)	(B)		
14. Newton's third law of motion(A) Statement of the law in words				
(B) How can the weight of a person relative to Earth be the same as the weight of Earth relative to a person? After all the Earth is so much larger.				

Assignment 12	EQUILIBRIUM			
 15. Equilibrium (A) Define (B) How are forces arrranged in equilibrium? (C) Net force in equilibrium? (D) Which of Newton's laws 	(A) (B)			
applies in equilibirum? (E) Effect on the motion of objects?	(C)			
	(D)			
	(E)			
16. Distinguish between static and dynamic equilibrium	Static equilibrium	Dynamic Equilibrium		
17. Technique for solving force problems	Assess: Which direction is relevant? Is the sum of forces equal to zero, or will have a value?			
A 10 kg mass is pulled along a rough surface at <u>constant velocity</u> by a rope exerting 20 N of force. (A) Determine the force of friction acting on	Diagram: Draw a formal free body diagram and	/or a diagram of relevant forces and components.		
(B) Determine the normal force acting on the mass.	Sum of force: Write the sum of force equation (or a b	palanced forces equation, if relevant)		
	Solve: Substitute known equations and values	s, solving for the desired missing value(s).		

18. Tension Problems	Determine the tension in the rope	Determine the tension in each rope.
Tioblems	10 kg	10 kg
	10 kg	10 Kg
Assess		
Diagram		
Diagram		
Sum of Force		
Sum of Force		
Solve		
19. A 10 kg mass is susp	l ended by two ropes as shown in the diagram. Solve fo	or the tension in each rope. $60^{\circ} 60^{\circ}$
Assess:		
Diagram		10 kg
Diagram:		
Sum forces:		
Solve:		

20. A 10 kg mass is suspe	ended by two ropes as shown in the diagram.	<u> </u>
Assess:		1 2 10 kg
Diagram:		
Sum forces:		
Solve:		
Assignment 13	SECOND LAW DYNAMICS	
21. Unbalanced force problems	(A)	
(A) How are forces arrranged when unbalanced forces act?		
(B) Net force when unbalanced forces act?	(B)	
(C) Which of Newton's laws		
applies when unbalanced forces act?	(C)	
(D) Effect on the motion of objects?	(D)	

Assess: 4.0	
4.0	12 N
	kg
Diagram:	
Sum forces:	
Solve:	
Solve.	
23. A 10 kg mass, initially at rest, is pulled by rope with 20 N of tension directed 37°.	N 7
A55055.	
10 kg 37	0
Diagram:	
Sum forces:	
Solve:	

Assignment 14 WEIGHT A	ND APPARENT WEIGHT	
 24. Acceleration in g's. (A) What is a g of acceleration? (B) An object accelerates at 50 m/s². What is its acceleration in g's ? (C) An object accelerates at 2.5 g's. 	(A)	
 (C) An object accelerates at 2.5 g's. What is its acceleration in m/s²? 	(B)	
	(C)	
25. For the objects at the right determine	60 kg object	120 N object
(A) their mass on Earth.		
(B) their weight on Earth.		
(C) their mass on the Moon, where gravity is 1/6 of that on Earth.		
(D) their weight on the Moon, where gravity is 1/6 of that on Earth.		
 26. Apparent weight (A) What is apparent weight? (B) How do humans feel weight? (C) What causes humans to feel an apparent weight that differs from 	(A)	
(D) When asked in a problem to solve for apparent weight which variable should you solve for?(E) What common household device	(B)	
(E) what common household device can be used to measure apparent weight?	(C)	
	(D)	
	(E)	

GN02: Dynamics

<u>}</u>

27. A 50 kg person rides in an elevator from the 1st to the 10th floor and back down to the 1st floor. When initially leaving the first floor the elevator accelerates upward at 2.0 m/s² until it reaches a speed of 3.0 m/s. It continues upward at a constant speed of 3.0 m/s until nearing the 10th floor. It then slows to a stop with a deceleration of 2.0 m/s². It remains at the 10th floor for a moment. Then the elevator accelerates downward at 2.0 m/s² until it reaches a speed of 3.0 m/s. It continues a speed of 3.0 m/s. It continues a the 10th floor for a moment. Then the elevator accelerates downward at 2.0 m/s² until it reaches a speed of 3.0 m/s. It continues a speed of 3.0 m/s. It continues downward at a constant speed of 3.0 m/s. Finally it slows to a stop with a deceleration of 2.0 m/s².

Moving Upward	(A) leaves 1 st floor initially accelerates up at 2.0 m/s ² .	(B) is moving upward at a constant velocity of 3.0 m/s.	(C) nearing 10 th floor and decelerating at 2.0 m/s ² .	(D) is stopped at 10 th floor.
Assess	Accelerating, up	Constant velocity, up	Decelerating, up	Stationary
Diagram				
Sum forces				
Solve				
Moving Downward	(A) leaves 10 th floor initially accelerates down at 2.0 m/s ² .	(B) is moving down at a constant velocity of 3.0 m/s.	(C) nearing 1^{st} floor and decelerating at 2.0 m/s ² .	(D) is stopped at 1 st floor.
Assess	Accelerating, down	Constant velocity, down	Decelerating, down	Stationary
Diagram				
Sum forces				
Solve				

Assignment 15	NORMAL FORCE AND IN	ICLINES		
28. What mechanism is responsible for the normal force?				
29. So far the normal force has been upward and vertical, as the surfaces have been horizontal and below the object.	(A)		(B)	
(A) Give an example of a downward normal force.(B) A horizontal				
normal force.				
 30. A 10 kg mass is positioned on a horizontal surface (A) Draw the FBD and solve for the normal force. 	(A)	(B)		(C)
An applied force $F_1 = 20$ N pushes down on the mass.				
(B) Draw the FBD and solve for the normal force.				
 An applied force F₂ = 50 N pulls up on the mass. (C) Draw the FBD and solve for the normal force. 				
 31. A mass placed on a frictionless incline will slide parallel to the slope. (A) On the diagram at the right, split force gravity into components that 	(A)			
are parallel and perpendicular to the slope.				
(B) Determine the component of gravity parallel to the slope.		F _g		
$\Sigma F_{g\parallel} =$				+ direction
(C) Determine the normal force.		\downarrow		θ
$N_{incline} =$	<u> </u>			

GN02: Dynamics

Assignment 16 FRICTION AND DRAG

29. Visualizing friction

Force due to the oughness of urfaces. Always lows motion and is negative. There nust be a forward orce trying to move he object to have	$f \le \mu N$ Stationary Objects $f < \mu N$	f	Force of Friction	Ν	0	Frictionless surface (default:		
lows motion and is negative. There nust be a forward orce trying to move				1	0	assume unless rough or friction)		
orce trying to move					-	If friction is present (moving or stationary)		
riction. The	Moving Objects (including an object that is	μ_S	Coefficient of Static Friction	No units	+	Always		
relationship between the forward force and friction is	stationary, but will move in the next instant)	μ_K	Coefficient of Kinetic Friction	No units	+	Always		
r ministration		Ν	Normal Force	Ν	+	If touching a surface		
31. There are two coefficients of friction.								
 (A) When is μ_s used? (B) When is μ_k used? (C) Which type of friction is stronger? 		(B)						
		(C)						
32. Factors affecting friction: Variable and how it affects friction.(A) Surfaces?								
C) Area?		(B)						
		(C)						
How does doubling the	e	(A)						
A) mass affect the ma friction force?	agnitude of the							
		(B)						
	 bere are two coefficients bere are two coefficients A) When is μ_s used? B) When is μ_k used? C) Which type of frictions actors affecting friction. A) Surfaces? B) Object? C) Area? 	$f = \mu N$ here are two coefficients of friction. A) When is μ_s used? B) When is μ_k used? C) Which type of friction is stronger? actors affecting friction: Variable and ow it affects friction. A) Surfaces? B) Object? C) Area? How does doubling the A) mass affect the magnitude of the	Instant) $f = \mu N$ is omplicated. $f = \mu N$ is omplicated. (A) here are two coefficients of friction.(A)A) When is μ_s used?(B)B) When is μ_k used?(C)C) Which type of friction is stronger?(C)actors affecting friction: Variable and ow it affects friction.(A)A) Surfaces?(B)B) Object?(B)C) Area?(B)Iow does doubling the friction force?(A)A) mass affect the magnitude of the friction force?(A)	Instanty omplicated.Instanty $f = \mu N$ Friction M $f = \mu N$ Normal Forcehere are two coefficients of friction. A) When is μ_s used?(A)(B)(C)(C)(C)actors affecting friction: Variable and ow it affects friction. (C)(A)(A) Surfaces? (B)(B)(B)(C) <td>Instant/ omplicated.Instant/ $f = \mu N$Friction$f = \mu N$NNormal ForceNA) When is μ_s used?(A)B) When is μ_k used?(B)C) Which type of friction is stronger?(C)actors affecting friction: Variable and ow it affects friction.(A)A) Surfaces?(B)B) Object?(B)C) Area?(C)Image: the magnitude of the friction force?(A)</td> <td>Instant) omplicated.$f = \mu N$Friction$f = \mu N$$N$Normal ForceN<math>here are two coefficients of friction.A) When is μ_s used?(A)(A)(B)(C)(C)actors affecting friction: Variable and ow it affects friction. A) Surfaces?(A)(B)(C)</math></td>	Instant/ omplicated.Instant/ $f = \mu N$ Friction $f = \mu N$ NNormal ForceNA) When is μ_s used?(A)B) When is μ_k used?(B)C) Which type of friction is stronger?(C)actors affecting friction: Variable and ow it affects friction.(A)A) Surfaces?(B)B) Object?(B)C) Area?(C)Image: the magnitude of the friction force?(A)	Instant) omplicated. $f = \mu N$ Friction $f = \mu N$ N Normal ForceN $here are two coefficients of friction.A) When is \mu_s used?(A)(A)(B)(C)(C)actors affecting friction: Variable andow it affects friction.A) Surfaces?(A)(B)(C)$		

34. A 2.0 kg block is initially at rest on a		(B) $f(N)$				
surface with coefficients of friction μ Static friction varies as horizontal for						
mass, and it has a maximum value.						
(A) Calculate max static friciton, dra on the graph, and label the line a	4 _					
$f_{s \max} = \mu_s N = \mu_s mg =$		-				
We will apply a changing horizontal and examine the resulting affect on the second sec		2 -				
(B) Determine friciton force. Draw a	and label it in the	-				
diagrams below. Plot it on the gr (C) Compare f and F (equal, great		0				
(D) How does the formula compare			2	4	6	$ \rightarrow E(\mathbf{N}) $
(E) Resulting motion.			1			$I'(\mathbf{N})$
Depiction of forward force F	C) How f and F compare?	D) How formula compares	E Resulting N	lotion		
F = 0						
F=1						
<i>F</i> = 2						
F=3						
F = 4						
F = 4.0000001						
F=5						
F = 6						
To maintain constant velocity, $F = ?$						
F =						
When an object is stationary $(v = 0)$						
About to move or just barely moves ($v = 0$	0)					
Constant velocity						
Accelerating						

38.	Drag	(A)					
	(A) What causes drag?(B) Drag can be thought of as	(B)					
	(C) The drag vector is always						
	directed motion. (D) The drag vector depends on	(C)					
	what three things?	(D)	(D)				
39. Drag due to the air on Earth is nearly $D_{air} \approx \frac{1}{4}Av^2$ This formula is a reasonable approximation for objects with a surface area A from the size of a		30	Terminal	Velocity $\Delta v = 4$	$\Delta v = 0 \text{ m/s}$		
	marble up to that of the front of a large works for speeds up to those of jet airpl Physics B does not need to memorize it has not showed up on an AP Physics ex being given (Usually as follows: "The f resistance is $F_D = bv^2$, where b is a co While memorizing it may not be import bad idea to realize that air reistance is r	anes. AP and so far it am without orce of air instant."). tant it is not a oughly	$\Delta v = 1 \text{ m/s}$				
	proportional to the square of velocity. T mathematics of air resistance requires in calculus, as the graph at the right should	ntegral		$\Delta v = 16 \text{ m}$			
	smooth curve. However, without Calcu look at each one second interval as thou This is not accurate but, it does help to conceptual understanding.	0	1	2 3	4 5 t (s)		
40.	The object graphed above is a 1.0 kg mass with a surface area $A = 1.0 \text{ m}^2$ running into air resistance. The mass accelerates from rest. We will exam	Time interval	v (m/s)	Δ <i>ν</i> (m/s)	$a_{ave} = \frac{\Delta v}{t} = \frac{\Delta v}{1}$	$\Sigma F = ma = (1)a$	
	each one second interval looking at	1 st second					
	(A) The velocity at the end of each second.(B) The change in velocity during	2 nd second					
	that second.(C) The average acceleration during that second (we are straightening	3 rd second					
	the curve and can only calculate the ave. accel. without Calculus).	4 th second					
	(D) The sum of forces that would create the average acceleration seen each second.	5 th second					
41.	The graph and table above show the effect of air resistance when a constant forward force (engine for a	(A) During the resuling motion the drag force					
	car, gravity for a sky diver) is applied to an object initially at rest. State the resulting trend for the following variables during its motion.	(B) During the resuling motion the sum of force					
	(A) Drag force (force of air resistance)	(C) During th	e resuling mo	tion the acceleration	n		
	(B) Sum of forces(C) Acceleration(D) Velocity	(D) During the resuling motion the velocity					

Assignment 17		COMPOUND BODI	ES					
42.	Compound body							
43.	Three blocks $m_1 = 2$ $m_3 = 6$ kg are pulled	kg $m_2 = 4$ kg, and	2 kg] [4 kg		6 kg	
	$m_3 = 6$ kg are pulled tension $T = 24$ N, as (A) Acceleration of the	shown below.			C		Č	24 N
		ne system.						
	(B) Net force on m_1 .							
	(C) Net force on m_2 .							
	(D) Net force on m_3 .							
	(E) Tension in the str	ring between m_1 and m_2						
	(T) Terrier in the st	···· 1						
	(F) Tension in the sti	ring between m_2 and m_3						

44.	Three blocks $m_1 = 2 \text{ kg} m_2 = 4 \text{ kg}$, and $m_3 = 6 \text{ kg}$ are acted upon by a force $F = 24 \text{ N}$, as shown in the diagram below.	24 N	2 kg	4 kg	6 kg	
	(A) Acceleration of the system.		>			
	(B) Net force on m_1 .					
	(C) Net force on m_2 .					
	(D) Net force on m_3 .					
	(E) Force between m_1 and m_2					
	(F) Force between m_2 and m_3					

	L			
45. Three blocks $m_1 = 2 \text{ kg}$	(A)	(B)	(C)	(D)
$m_2 = 4 \text{ kg}$, and $m_3 = 6 \text{ kg}$				
are suspended from strings				
of the following quantities. m_2	(E)			
(A) Acceleration of the				
system				
(B) Net force on m_1				
(C) Net force on m_2				
(D) Net force on m_3	(F)			
(E) Tension between ceiling and m_1	(1)			
(F) Tension between m_1 and m_2				
(G) Tension between m_2 and m_3				
	(G)			
4 Three blocks $m = 2 \log 10^{-1}$	(A)	(D)	(C)	
46. Three blocks $m_1 = 2 \text{ kg}$ $m_2 = 4 \text{ kg}$, and $m_3 = 6 \text{ kg}$ m_1	(A)	(B)	(C)	(D)
are stacked as shown.				
Determine each of the m_2	(E)			
following quantities.				
(A) Acceleration of the m_3				
system				
(B) Net force on m_1				
(C) Net force on m_2				
(D) Net force on m_3	(F)			
(E) Force between m_1 and m_2				
(F) Force between m_2 and m_3				
(G) Force between m_3 and the floor				
	(G)			

Assignment 18 PULLEYS	
47. What is the effect of MASSLESS pulleys on	A)
(A) the magnitude of forces in the problem?	
(B) the direction of forces in the problem?	B)

48.	Mass $m_1 = 5.00$ kg is connected to	(A)	(C) Diagram
	mass $m_2 = 10.0$ kg by a string		
	drapped over a massless frictionless		
	pulley, as shown in the diagram. The		
	masses are released from rest.	(B) Assess	
			m_1 m_2
	\frown		
		(D) Sum of forces and solve for ac	cceleration.
	5.0 1/2		
	5.0 kg 10 kg		
	(A) What is this device called?		
	(B) Assess		
	(C) Diagram		
	(D) Sum of forces and solve for		
	acceleration.		
	(E) Sum of forces and solve for	(E) Sum of forces and solve for te	nsion.
	tension.		

49. Mass m_1 is on a horizontal surface is connnected to mass m_2 by a string drapped over a massless frictionless pulley, as shown in the diagram. The masses are released from rest.			
FRICTIONLESS	FRICTION		
(A) FBD	(A) FBD		
<i>m</i> ₁ <i>m</i> ₂	<i>m</i> ₁ <i>m</i> ₂		
(B) Sum of forces equation	(B) Sum of forces equation		
(C) Substitute known equations	(C) Substitute known equations if masses remain stationary		
	(C) Substitute known equations if constant velocity results		
	(C) Substitute known equations if masses accelerate		
(E) List an equation to find tension in the string	(E) List an equation to solve for tension if stationary		
	(E) List an equation to solve for tension if constant velocity		
	(E) List an equation to solve for tension if accelerating		

54. Simple Machines: Lever, Pulley, Incline	Create Mechanical Advantage: Require less force to accomplish a task, but
	objects must travel greater distances using longer time.

Assignment 19 C	CIRCULAR MOTION, PAI	RT 1	
 55. When writing the sum of force equation, (A) What takes the place of Σ<i>F</i>? (B) How are the signs on pating forces 	(A)		
on acting forces assigned?	(B)		
	draw the FBD in part (a) and write		
56. Lowest point in circles (A) A ball rolls through a circular arc as	Diagram	FBD	Sum Forces
shown. Solve when it is at point P.	P	0	
(B) A roller coaster is in the two positions shown.			
(C) A pendulum swings through its arc. Solve when mass is at point P.	P P	0	
(D) A mass is spun through the air in a vertical circle by a string.		●	

57. Highest point in c	ircles: Two solutions	No specific info	ormation given	Minimum Spee	ed or Weightless
(A) A mass is spun through the air in a vertical circle by a string.		•		•	
(B) A roller coaster is in the position shown.					
(C) A roller coaster is in the position shown.					
58. Friction	If an object is	circling with not	ning holding it in place, ther	friction may be	acting toward the center.
(A) A penny on a table, or a chi a merry-go-ro	ld on		0		
(B) Car making a Solve at the instant picture (from above) the right.	ed	Ä	\bigtriangleup		
(C) Which coeffic of friction is needed, and h does this affe problem parameters?	low				

GN02: Dynamics

AP Physics 1

Г

Assignment 20 CIRCULAR MOTION, PART 2							
	y-direction	x-direction (x-z plane)					
$L \qquad \theta$	(A) Assess	Assess					
59. A mass $m = 200$ g is	(B) FBD	Vector component diagram					
attached to one end of a string of length $L = 50$ cm. The other end of the string is tied to a fixed point on the ceiling. The apparatus is set into motion so that the mass moves in a circular path and the string traces out a cone, $\theta = 37^{\circ}$.	•						
 (A) Assess (B) FBD and vector component diagram (C) Determine the radius of 							
the circle. We may need this later.(D) Sum of forces(E) Solve for the tangential	(C) Radius	<u> </u>					
velocity (F) Determine the period of motion experienced by the mass.	(D) Sum of force	Sum of force					
	 (E) Solve for tangential velocity (F) Solve for the period of the motion 						

60. A 1000 kg car is half way	y-direction	<i>x</i> -direction (<i>x</i> - <i>z</i> plane)
through a banked turn with a radius of 20 m and an incline of 37° .	(A) Assess	Assess
 (A) Assess (B) Diagram (C) Sum of forces (D) Solve 	(B) FBD Diagram	Diagram with components
	(C) Sum of forces	Sum of forces
	(D) Solve	
61. In an amusement park ride the room spins so fast that occupants feel pressed against the walls. The floor drops, but occupants do not slide down the wall.(A) Complete the FBD for		(A)
the rider in the position shown in the diagram.(B) If the radius is 10 m and the coefficient of friction is 0.4 determine the minimum speed that the ride must turn in order to keep the occupants from sliding down the wall.	(B)	

