

7. Free Body Diagram (FBD). A simple diagram showing all the force vectors acting on an object. (A) A sled pulled horizontally along a rough surface by rope inclined at an angle of 30°. Air resistance is negligible.	(B) A block of wood sliding down a rough incline.	
8.Objects and systems		
9.Distinguish between external and internal forces		

Assignment 12

15. Equilibrium

EQUILIBRIUM
(A) Define
(B) How are forces arrranged in equilibrium?
(C) Net force in equilibrium?
(D) Which of Newton's laws applies in equilibirum?
(E) Effect on the motion of objects?

16.Distinguish between static and dynamic

$\left.\begin{array}{|c|}\hline \text { 17. Technique for } \\ \text { solving force } \\ \text { problems }\end{array}\right\}$

A 10 kg mass is pulled along a rough surface at constant velocity by a rope exerting 20 N of force.
(A) Determine the force of friction acting on the mass.
(B) Determine the normal force acting on the mass.
(A)

(B)
(B)
(C)
(D)
(E)

(C)

Static equilibrium	Dynamic Equilibrium

Assess: Which direction is relevant? Is the sum of forces equal to zero, or will have a value?

Diagram: Draw a formal free body diagram and/or a diagram of relevant forces and components.

Sum of force: Write the sum of force equation (or a balanced forces equation, if relevant)

Solve: \quad Substitute known equations and values, solving for the desired missing value(s).

| 18. Tension
 Problems | Determine the tension in the rope | Determine the tension in each rope. | |
| :--- | :--- | :--- | :--- | :--- |
| Assess | | | |
| Diagram | | | |
| Sum of Force | | | |
| Solver | | | |
| Assess: | | | |

Sum forces:

Solve:
20. A 10 kg mass is suspended by two ropes as shown in the diagram.

Assess:

Diagram:

Sum forces:

Solve:

Assignment 13	SECOND LAW DYNAMICS
21. Unbalanced force problems	(A)
(A) How are forces arrranged when unbalanced forces act?	
(B) Net force when unbalanced	
forces act?	(B)
(C) Which of Newton's laws	
applies when unbalanced forces act?	(C)
(D) Effect on the motion of objects?	(D)

22. A 4.0 kg mass, initially at rest, is pushed by a 12 N force horizontally on a frictionless surface. Assess:

Diagram:

Sum forces:

Solve:
23. A 10 kg mass, initially at rest, is pulled by rope with 20 N of tension directed 37°. Assess:

Diagram:

Sum forces:

Solve:

Assignment 14 WEIGHT AND APPARENT WEIGHT

24. Acceleration in g's. (A) What is a g of acceleration? (B) An object accelerates at $50 \mathrm{~m} / \mathrm{s}^{2}$. What is its acceleration in g's? (C) An object accelerates at 2.5 g 's. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?	(A)	
	(B)	
	(C)	
25. For the objects at the right determine	60 kg object	120 N object
(A) their mass on Earth.		
(B) their weight on Earth.		
(C) their mass on the Moon, where gravity is $1 / 6$ of that on Earth.		
(D) their weight on the Moon, where gravity is $1 / 6$ of that on Earth.		
26. Apparent weight (A) What is apparent weight? (B) How do humans feel weight? (C) What causes humans to feel an apparent weight that differs from actual weight? (D) When asked in a problem to solve for apparent weight which variable should you solve for? (E) What common household device can be used to measure apparent weight?	(A)	
	(B)	
	(C)	
	(D)	
	(E)	

27. A 50 kg person rides in an elevator from the $1^{\text {st }}$ to the $10^{\text {th }}$ floor and back down to the $1^{\text {st }}$ floor. When initially leaving the first floor the elevator accelerates upward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a speed of $3.0 \mathrm{~m} / \mathrm{s}$. It continues upward at a constant speed of $3.0 \mathrm{~m} / \mathrm{s}$ until nearing the $10^{\text {th }}$ floor. It then slows to a stop with a deceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. It remains at the $10^{\text {th }}$ floor for a moment. Then the elevator accelerates downward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a speed of $3.0 \mathrm{~m} / \mathrm{s}$. It continues downward at a constant speed of $3.0 \mathrm{~m} / \mathrm{s}$. Finally it slows to a stop with a deceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$.

Assignment 15 NORMAL FORCE AND INCLINES

32. A 5.0 kg mass that is released from rest on a frictionless 10 m long 30° incline.

Assess:

Diagram:

Sum forces:

Solve:
33. Normal Force: Tricks student throughout the year. They wrongly think there is only one formula for the normal force. You must solve for the normal force in every problem.
There are three scenarios that you will encounter frequently, and you may memorize the normal force for these common situations.

However, when you memorize shortcuts you must use them correctly.

$\begin{gathered} N=F_{g} \\ N=m g \end{gathered}$	$\begin{gathered} N+F_{y}=F_{g} \\ N=F_{g}-F_{y} \\ N=m g-F \sin \theta \end{gathered}$	$\begin{aligned} & N=F_{g} \cos \theta \\ & N=m g \cos \theta \end{aligned}$

Additional forces parallel to the surface do not affect the normal force. However, any additional forces perpendicular, or at an angle to the surface will affect the normal force.

Assignment 16 FRICTION AND DRAG

29. Visualizing friction

30	Friction Force due to the oughness of surfaces. Always slows motion and is negative. There must be a forward force trying to move he object to have friction. The elationship between he forward force and friction is complicated.	$f \leq \mu N$ Stationary Objects $f<\mu N$ Moving Objects (including an object that is stationary, but will move in the next instant) $f=\mu N$	f	Force of Friction	N	+	Never Positive
						0	Frictionless surface (default: assume unless rough or friction)
						-	If friction is present (moving or stationary)
			μ_{s}	Coefficient of Static Friction	No units	+	Always
			μ_{K}	Coefficient of Kinetic Friction	No units	+	Always
			N	Normal Force	N	+	If touching a surface
31. There are two coefficients of friction. (A) When is μ_{s} used? (B) When is μ_{k} used? (C) Which type of friction is stronger?			(A)				
			(B)				
			(C)				
32.	Factors affecting friction: Variable and how it affects friction. (A) Surfaces? (B) Object? (C) Area?		(A)				
			(B)				
			(C)				
33. How does doubling the (A) mass affect the magnitude of the friction force? (B) Surface area affect the magnitude of the friction force?			(A)				
			(B)				

34. A 2.0 kg block is initially at rest on a rough horizontal surface with coefficients of friction $\mu_{\mathrm{s}}=0.2$ and $\mu_{\mathrm{k}}=0.1$. Static friction varies as horizontal force is applied to a mass, and it has a maximum value.
(A) Calculate max static friciton, draw it as a dashed line on the graph, and label the line as $f_{\mathrm{s} \text { max }}$.

$$
f_{s \max }=\mu_{s} N=\mu_{s} m g=
$$

We will apply a changing horizontal force F to the mass and examine the resulting affect on the friction force f.
(B) Determine friciton force. Draw and label it in the diagrams below. Plot it on the graph at the right
(C) Compare f and F (equal, greater, less, etc.)
(D) How does the formula compare to f determined?
(E) Resulting motion.

35. A 5.0 kg box is pulled at constant velocity by a 10 N force along a rough surface. Complete all five steps to find the coefficient of friction.

36. Complete all five steps to determine the acceleration of a mass on a 30° incline that has coefficients of friction, $\mu_{s}=0.2$, and $\mu_{k}=0.1$.

37. A 5.0 kg box is pulled along a surface ($\mu_{k}=0.1$) by a 10 N force at an angle of 37°. Complete all five steps to determine the acceleration.

Assignment 17 COMPOUND BODIES

42. Compound body
43. Three blocks $m_{1}=2 \mathrm{~kg} m_{2}=4 \mathrm{~kg}$, and $m_{3}=6 \mathrm{~kg}$ are pulled by a string with tension $T=24 \mathrm{~N}$, as shown below.
(A) Acceleration of the system.

(B) Net force on m_{1}.
(C) Net force on m_{2}.
(D) Net force on m_{3}.
(E) Tension in the string between m_{1} and m_{2}
(F) Tension in the string between m_{2} and m_{3}

AP Physics 1

GN02: Dynamics
44. Three blocks $m_{1}=2 \mathrm{~kg} m_{2}=4 \mathrm{~kg}$, and $m_{3}=6 \mathrm{~kg}$ are acted upon by a force $F=24 \mathrm{~N}$, as shown in the diagram below.
(A) Acceleration of the system.

(B) Net force on m_{1}.
(C) Net force on m_{2}.
(D) Net force on m_{3}.
(E) Force between m_{1} and m_{2}
(F) Force between m_{2} and m_{3}
45. Three blocks $m_{1}=2 \mathrm{~kg}$ $m_{2}=4 \mathrm{~kg}$, and $m_{3}=6 \mathrm{~kg}$ are suspended from strings as shown. Determine each of the following quantities.
(A) Acceleration of the system.
(B) Net force on m_{1}

(C) Net force on m_{2}
(D) Net force on m_{3}
(E) Tension between ceiling and m_{1}
(F) Tension between m_{1} and m_{2}
(G) Tension between m_{2} and m_{3}

(A)	(B)	(C)	(D)
(E)			

(F)
(G)

(A)	(B)	(C)	(D)

(E)
(A) Acceleration of the system

(B) Net force on m_{1}
(C) Net force on m_{2}
(D) Net force on m_{3}
(E) Force between m_{1} and m_{2}
(F) Force between m_{2} and m_{3}
(G) Force between m_{3} and the floor

(F)

(G)

Assignment 18 PULLEYS

47. What is the effect of MASSLESS pulleys on
(A) the magnitude of forces in the problem?
(B) the direction of forces in the
A)
A)
B) problem?
48. Mass $m_{1}=5.00 \mathrm{~kg}$ is connnected to mass $m_{2}=10.0 \mathrm{~kg}$ by a string drapped over a massless frictionless pulley, as shown in the diagram. The masses are released from rest.

(A) What is this device called?
(B) Assess
(C) Diagram
(D) Sum of forces and solve for acceleration.
(E) Sum of forces and solve for tension.
(D) Sum of forces and solve for acceleration.
(E) Sum of forces and solve for tension.
49. Mass m_{1} is on a horizontal surface is connnected to mass m_{2} by a string drapped over a massless frictionless pulley, as shown in the diagram. The masses are released from rest.

FRICTIONLESS	FRICTION
(A) FBD	(A) FBD
(B) Sum of forces equation	(B) Sum of forces equation
(C) Substitute known equations	(C) Substitute known equations if masses remain stationary

50.	Numerical Problems	Variable Problems
Givens	Actual values with units: $\boldsymbol{m}_{\mathbf{1}}=\mathbf{1} \mathbf{k g}$ and $\boldsymbol{m}_{\mathbf{2}}=\mathbf{2} \mathbf{k g}$.	Variables only (no units): Masses \boldsymbol{m} and $\mathbf{2 m} \boldsymbol{m}$.
How solved	Easy: Substitute the numbers and calculate.	Tells us the relative sizes of the masses compared to each other. 2m has twice the mass of m. Substitute the letters and coefficients. Solve algebraically.
Constants	Need numbers: $g=9.8$ and $\pi=3.14$	Stay with letters: $\boldsymbol{g}=\boldsymbol{g}$ and $\boldsymbol{\pi}=\boldsymbol{\pi}$ The only numbers allowed are coefficients.
Units	Units in calculations are optional. However, including units helps and canceling them, ensure the correctness of the answer. It does create more clutter and uses time.	No units Unit letters can become confused with variable letters.
Answer	If given numbers and units, then answer with numbers and units.	If given variables and coeffiients (with no units), then answer with variable and coefficient (with no units).

51. For the two problems below the masses are m and $2 m$. Determine acceleration and tension.
(A)

(B) Frictionless

52. For this example $m_{1}=m_{2}$.

(A) Sum forces to find acceleration if the incline is frictionless.
(B) Sum forces to find acceleration if the incline has friction.
(C) Sum forces to find friction that will keeep system stationary.
(D) Sum forces for one mass only to find tension.

Note: If the hanging mass is equal or larger than the inclined mass, the motion will be towards the hanging mass. When the hanging mass is smaller you may have to solve $F_{g}=m g$ for the hanging mass and $F_{g}=m g \sin \theta$ for the inclined mass to determine which force is larger.
(A) Find acceleration if frictionless.
(B) Find acceleration if friction.
(C) Find friction to keep stationary.
(D) Find tension
53. Mass $m_{2}=20 \mathrm{~kg}$ is located on a rough incline, $\mu_{\mathrm{s}}=0.3, \mu_{k}=0.2$, and $\theta=37^{\circ}$. It is connnected to mass m_{1} by a string drapped over a massless frictionless pulley, as shown in the diagram at the right.
(A) Draw the FBD for each mass.
(B) Determine the largest possible m_{1} that allows the system to remain stationary.
(C) Determine the tension in the string.

The string is now cut.

(D) Determine the speed of m_{2} when it reaches the bottom of the 5.0 m long incline.
(E) Assume the mass transitions to the flat surface smoothly and that the horizontal surface is frictionless.
(F) Determine the horizontal range Δx of mass m_{2} after leaving the 4.0 m high horizontal surface and impacting the ground below.

Assignment 19 CIRCULAR MOTION, PART 1

55. When writing the sum of force equation, (A) What takes the place of ΣF ? (B) How are the signs on acting forces assigned?	(A)		
For the following problems draw the FBD in part (a) and write the sum of force equation in (b).			
56. Lowest point in circles	Diagram	FBD	Sum Forces
(A) A ball rolls through a circular arc as shown. Solve when it is at point P.		\bigcirc	
(B) A roller coaster is in the two positions shown.		\square	
(C) A pendulum swings through its arc. Solve when mass is at point P.		\bigcirc	
(D) A mass is spun through the air in a vertical circle by a string.		-	

Assignment 20 CIRCULAR MOTION, PART 2

59. A mass $m=200 \mathrm{~g}$ is attached to one end of a string of length $L=50 \mathrm{~cm}$. The other end of the string is tied to a fixed point on the ceiling. The apparatus is set into motion so that the mass moves in a circular path and the string traces out a cone, $\theta=37^{\circ}$.
(A) Assess
(B) FBD and vector component diagram
(C) Determine the radius of the circle. We may need this later.
(D) Sum of forces
(E) Solve for the tangential velocity
(F) Determine the period of motion experienced by the mass.

\boldsymbol{y}-direction	\boldsymbol{x}-direction (\boldsymbol{x} - \boldsymbol{z} plane)
(A) Assess	Assess
(B) FBD	

(E) Solve for tangential velocity
(F) Solve for the period of the motion

60. A 1000 kg car is half way through a banked turn with a radius of 20 m and an incline of 37°. (A) Assess (B) Diagram (C) Sum of forces (D) Solve	y-direction	x-direction ($x-z$ plane)
	(A) Assess	Assess
	(B) FBD Diagram	Diagram with components
	(C) Sum of forces	Sum of forces
	(D) Solve	
61. In an amusement park ride the room spins so fast that occupants feel pressed against the walls. The floor drops, but occupants do not slide down the wall. (A) Complete the FBD for the rider in the position shown in the diagram. (B) If the radius is 10 m and the coefficient of friction is 0.4 determine the minimum speed that the ride must turn in order to keep the occupants from sliding down the wall.	(B)	(A)

