Momentum Problem Set 2

1. In 1987 , Marisa Canafoglia, of Italy, roller-skated at a record -setting speed of 40.3 km / h. If the magnitude of Canafoglia's momentum was $6.6 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, what was her mass?
2. The record for the smallest dog in the world belongs to a terrier who had a mass of only 113 g . Suppose this dog runs to the right with a speed of $2.00 \mathrm{~m} / \mathrm{s}$ when it suddenly sees a mouse. The dog becomes scared and uses its paws to bring itself to rest in 0.8 s . What is the force required to stop the dog? What is the dog's stopping distance?
3. In 1994, a pumpkin with a mass of 449 kg was grown in Canada. Suppose you want to push a pumpkin with this mass along a frictionless horizontal surface. You give the pumpkin a good push, only to find yourself sliding back at a speed of $4 \mathrm{~m} / \mathrm{s}$. How far will the pumpkin slide 3.0 s after the push? Assume your mass to be 60.0 kg .
4. The heaviest wild lion ever measured had a mass of 313 kg . Suppose this lion is walking by a lake when it sees an empty boat floating at rest near the shore. The curios lion jumps into the boat with a speed of $6 \mathrm{~m} / \mathrm{s}$, causing the boat and the lion in it to move away from the shore with a speed of $2.5 \mathrm{~m} / \mathrm{s}$. How much kinetic energy is dissipated in this inelastic collision?
\qquad
5. (2D) A 1.5 kg ball moving East at $0.4 \mathrm{~m} / \mathrm{s}$ collides with a stationary 0.5 kg ball. If after collision the 1.5 kg ball travels north at $0.15 \mathrm{~m} / \mathrm{s}$. What was the magnitude and the direction of the second ball after collision?
6. (2D) Suppose a freshman of mass 50 kg is running east around the corner of the hallway at $3 \mathrm{~m} / \mathrm{s}$ while a senior of mass 80 kg is walking south at the same corner at 1 m / s. If they stick together for a few moments after they collide, what is the magnitude and direction of their velocity?
7. (2D) A small stick of dynamite is used to explode a 100 kg block of concrete. The block splits into three major fragments such that one 30 kg piece goes directly south at $40 \mathrm{~m} / \mathrm{s}$ and another 30 kg piece goes west at $35 \mathrm{~m} / \mathrm{s}$, then what is the magnitude and direction of the third piece's velocity?
