$\qquad$

1. Vibration of an object about an equilibrium point is called Simple Harmonic Motion When the restoring force is proportional to the $\qquad$ and in the opposite direction.
2. A mass attached to a spring vibrates back and forth. At the equilibrium position, what values are at a maximum?
3. A mass attached to a spring vibrates back and forth. At the equilibrium position, what values are zero?
4. A mass attached to a spring vibrates back and forth. At maximum displacement, what values are at a maximum?
5. A mass attached to a spring vibrates back and forth. At maximum displacement, what values are zero?
6. A simple pendulum swings in simple harmonic motion. At maximum displacement, what values are at a maximum?
7. A simple pendulum swings in simple harmonic motion. At maximum displacement, what values are zero?
8. A mass-spring system can oscillate with simple harmonic motion because a compressed or stretched spring has which kind of energy?
9. A simple pendulum swings in harmonic motion. At the equilibrium position the bob has which kind of energy?
$\qquad$
10. A simple pendulum swings in harmonic motion. At maximum displacement the bob has which kind of energy?
11. If a pendulum is adjusted so that its frequency changes from 10 Hz to 20 Hz , its period will change from $n$ seconds to
12. By what factor should the length of a simple pendulum be changed to triple the period of vibration?
13. For a system in simple harmonic motion, what word do we use to represent the number of cycles or vibrations per unit of time?
14. For a system in simple harmonic motion, what word do we use to represent the time required to complete one cycle of motion?
15. A stretched or compressed spring stores $\qquad$ potential energy
16. In the equation for Hooke's Law, $F_{\text {elostic }}=-k x$, the term $k$ represents the
$\qquad$ of a spring.
17. A certain pendulum with a 1.00 kg bob has a period of 3.50 s . What will happen to the period of the pendulum if the 1.00 kg bob is replaced by a bob with a mass of 2.00 kg ? Explain your answer.
$\qquad$
18. How much displacement will a coil spring with a spring constant of $110 \mathrm{~N} / \mathrm{m}$ achieve if it is stretched by 70 N force?
19. A mass on a spring that has been compressed 0.29 m has a restoring force of 82 N . What is the value of this spring's spring constant?
20. An amusement park ride has a frequency of 0.064 Hz . What is the ride's period?
21. A truck with bad shock absorbers bounces up and down after hitting a bump. The truck has a mass of 1700 kg and is supported by four springs, each having a spring constant of 6200 $\mathrm{N} / \mathrm{m}$. What is the period for each spring? (Each spring takes an equal portion of the total mass)
22. What is the period of a 6.93 m long pendulum with a bob of mass 68 kg ? Assume the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
23. A student wishes to construct a mass-spring system that will oscillate with the same frequency as a swinging pendulum with a period of 3.99 s . The student has a spring with a spring constant of $77.1 \mathrm{~N} / \mathrm{m}$. What mass should the student use to construct the mass-spring system?
$\qquad$
24. On planet X , a pendulum of length 4 meters has a period of 1.8 seconds. What is the acceleration due to gravity on planet X ?
25. A 10 kg mass is attached to a spring of unknown spring constant k . It is displaced and released and begins to oscillate. If the period of this oscillation is 1.2 seconds, then what is the value of the unknown spring constant?
26. A pendulum of unknown length is put into simple harmonic motion on planet Y. Planet Y has an acceleration due to gravity with a magnitude of $20.5 \mathrm{~m} / \mathrm{s}^{2}$. If the period of this motion is 0.4 seconds, what is the length of the pendulum?
