\qquad

Work and Energy Notes

Work - The product of the components of a force along the direction of displacement and the magnitude of the displacement. Work is a scalar value.

$$
\mathrm{W}=\mathrm{F} \cdot \mathrm{~d}
$$

The SI unit for Work and Energy is the Joule [J], which represent a Newton \cdot meter [$\mathbf{N} \cdot \mathbf{m}$]
The above formula only works if F and d are in the same direction.
Work is only done when components of a force are parallel to the displacement.

Therefore, if we define the angle θ to be the angle between the displacement vector and the force vector, the equation transforms into

$$
\mathrm{W}=\mathrm{F} \cdot \mathrm{~d} \cdot \cos (\theta)
$$

If more than one force is acting on an object, you can find the net work done on the object by first find the net force on the object.

$$
\mathrm{W}_{\mathrm{net}}=\mathrm{F}_{\mathrm{net}} \cdot \mathrm{~d} \cdot \cos (\theta)
$$

Example: How much work is done on a box that is pushed 10 meters across a horizontal floor by a force of 50 N at an angle 20° above the horizontal.
\qquad

Kinetic Energy: The energy of an object that is due to the object's motion. It dependent on both the mass and the velocity of an object.

$$
K E=\frac{1}{2} m v^{2}
$$

Example: A 500 kg go-kart is moving at a constant speed of $6 \mathrm{~m} / \mathrm{s}$. If my mass is 65 kg , how fast would I have to be moving to have the same kinetic energy of the go-cart?

Try more for yourself. Page 166 Practice B. Answers: (1) $1.7 \times 10^{2} \mathrm{~m} / \mathrm{s}$ (2) $38.8 \mathrm{~m} / \mathrm{s}$ (3) the bullet with greater mass, 2 to 1 . (4) $2.4 \mathrm{~J}, 9.6 \mathrm{~J}$, the bullet with greater speed, 1 to 4 . (5) $1.6 \times 10^{3} \mathrm{~kg}$

Work-Kinetic Energy Theorem: The net work done by all the forces acting on an object is equal to the change in the object's kinetic energy.

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE}
$$

Example: How much work does it take to get an 800 kg car to $15 \mathrm{~m} / \mathrm{s}$ if it started from rest?

Example: On a frozen pond, a person kicks a 10 kg sled, giving it an initial speed of $2.2 \mathrm{~m} / \mathrm{s}$. How far does the sled move if the coefficient of kinetic friction between the sled and the ice is 0.10 ? (page 167)
\qquad

Try more for yourself. Page 168 Practice C. Answers: (1) 7.8 m (2) 21 m (3) 5.1 m (4) $3.0 \times 10^{2} \mathrm{~N}$
Potential Energy: The energy associated with an object because of the position, shape, or condition of the object.

Gravitational Potential Energy: The potential energy stored in the gravitational fields of interacting bodies.

$$
\mathrm{PE}_{\mathrm{g}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

(where m is mass, g is gravitational acceleration constant, and h is height)

Example: What is the change in potential energy for a diver from when he jumps off a 10 m high cliff and when he first hits the water?

Elastic Potential Energy: The energy available for use when a deformed elastic object returns to its original configuration.

$$
P E_{\text {elastic }}=\frac{1}{2} k x^{2}
$$

(where k is the spring constant and x is the distance compressed or stretched)
Spring Constant: a parameter that is a measure of a spring's resistance to being compressed or stretched.

Example: A spring with a spring constant of $15 \mathrm{~N} / \mathrm{m}$ has an relaxed length of 1.0 m . If the spring is stretched to 2.5 m , what is the elastic potential energy stored in the spring?
\qquad

Mechanical Energy: the sum of kinetic energy and all forms of potential energy.

$$
\mathrm{ME}=\mathrm{KE}+\mathrm{PE}_{\text {total }}
$$

(All energy, such as nuclear, chemical, internal, electrical, that is not mechanical energy will be called nonmechanical energy, we will not use this for now)

Conservation of Mechanical Energy: In the absence of friction and other nonconservative forces, the total amount of mechanical energy in a system will remain constant.

$$
\mathrm{ME}_{\mathrm{i}}=\mathrm{ME}_{\mathrm{f}}
$$

Example: I want to know the speed a bowling ball will reach if rolled down a 3 m high ramp starting from rest. Let's say the bowling ball has a 4 kg mass and we can assume the interaction between the ball and the ramp is frictionless.

Example: A spring of force constant $20 \mathrm{~N} / \mathrm{m}$ is attached to a stable wall on one end. The other end is attached to a 3 kg mass which is pushed toward the wall and compresses the spring 35 cm . If the person let's go of the mass, what is velocity of the mass when it passes through its starting position?
\qquad

Power: A quantity that measures the rate at which work is done or energy is transformed.

$$
P=\frac{W}{\Delta t}
$$

(The SI unit for power is the Watt [W] which is defined as joules per second $[\mathrm{J} / \mathrm{s}]$)
Example: A weightlifter wants to bench 100 kg in 0.8 seconds. For his body size, a correct lift involves moving the weight directly upward at a constant speed for 0.7 m . What is the power supplied by the weightlifter in this process.

$$
P=\frac{W}{\Delta t}=F \frac{d}{\Delta t}=F v
$$

(Alternative formula for constant speed situations)
Example: A 30 kg crate needs to be pushed across the floor at a constant speed of $2 \mathrm{~m} / \mathrm{s}$. If the kinetic frictional force in this situation is 90 N , then what power must be applied to the crate?

