47 CHARGE

1. What are the basic particles of charge?

2. What is meant when we say that charge is
(A) conserved?
(B) quantized?
(A)
(A)
(B)
3. Does the term neutral charge mean no charge? If not what does it mean?
4. If an object has a charge of 1 C , does it mean that it is made up of only 1 C of protons? If not what does it mean?
5. Polarized objects.
(A) Where are the charges located if the object is polarized?
(B) If an object is initial uncharged, and is then polarized, what is its new net charge?

(A)

(B)

48 UNIFORM ELECTRIC FIELDS AND FORCE

13. Fields: A property of both mass and charge is that they both alter the space around them. This disturbance is known as a field (the mathematical field, where a function has a value at every point in space x, y, and z). All masses generate gravity fields \boldsymbol{g}, and all charges generate electric fields \boldsymbol{E}. These fields surround masses and charges. The larger the mass or the charge, the larger its corresponding field. These fields radiate outward from masses and charges, and they can move through empty space. The field is strongest close to a mass or a charge and weakens with distance. Fields extend to infinity, but at some distance they will become weak enough to be considered negligible. Fields are vector quantities and have both magnitude and direction.
14. Uniform fields

15. Fields of flat objects such as a small section of the earth's surface or between two evenly spaced charged plates.	Gravity	Electric	
(A) Determining field direction (fields are vectors)			
(B) Rules for drawing field vectors			
(C) Field variables and units			
(D) Magnitude of force on an object located in each field.	$\begin{gathered} F_{g}=m g \\ F_{g}=m_{\text {objectinthe field }} g_{\text {earth }} \\ F_{g}=\text { force on the object and on the earth } \end{gathered}$		
(E) Direction of the above force (vector)	Mass	Positive charge	Negative charge
(F) Acceleration of a mass in a gravity field and a charge in an electric field.	$\begin{aligned} \Sigma F & =F_{g} \\ \text { xua } a & =x g \\ a & =g \end{aligned}$ The acceleration of gravity and the gravity field have the same magnitude.		

(G) Solving for time, speed, and distance

49 UNIFORM ELECTRIC FIELDS, POTENTIAL, AND ENERGY

23. Fields	Gravity	Electric
(A) Field	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$	$E=$ given or $E=-\frac{V}{d}$ (V is explained below)
(B) Force	$F_{g}=m g$	$F_{E}=q E$
(C) Potential energy	$U_{g}=m g h$	$U_{E}=q E d$
(D) Potential Potential is essentially the ability to create motion or speed.	Gravity is a weak force and there must be large changes in distance in order for gravity g to change significantly. As a result, changes in energy and speed are associated mainly with changes in height. $\Delta U_{g}=m g \Delta h$	Electricity is often billions and billions of times larger than gravity. Even a small change in distance can result in a large change in the electric field (non-uniform fields). Both field and distance often change, and their combined effect changes energy and charge speed. $\Delta U_{E}=q \Delta E \Delta d$ Potential in electricity is a combination of field and distance. $V=E d$ Potential (measured in volts) can be thought of as electric pressure.
(E) Potential energy revisited	$U_{g}=m g h$	$U_{E}=q E d$ or $U_{E}=q V$
(F) Work	$W_{g}=m g \Delta h$	When working with charged plates the electric field is uniform. Changes in distance cause changes in both voltage and energy. You can work with Δd or ΔV. $W_{E}=q E \Delta d \quad \text { or } \quad W_{E}=q \Delta V$
(G) Conservation of energy	$m g \Delta h=\frac{1}{2} m v^{2}$	$q E \Delta d=\frac{1}{2} m v^{2}$ or $q \Delta V=\frac{1}{2} m v^{2}$
(H) Visualizing potential		
(I) Equipotential lines		

24. The plates generate a $20 \mathrm{~N} / \mathrm{C}$ electric field, and are separated by 15 cm . Determine the speed of the electron when it exits the plates.

A)
B)
C)
(A) Determine the initial potential energy of the electron.
(B) Determine the work done on the electron as it moves from the negative to the positive plate.
(C) Determine the speed of the proton as it exits the hole in the positive plate.
(D) What type of motion will the electron experience after passing through the hole in the plate?

D)

25. The plates have a potential difference of 20 V. Determine the speed of the proton exiting the plates.

26. What is significant about the phrase, "Accelerated through a potential difference?"
27. A charged particle is accelerated through a potential difference of 40 V in a set of vertical plates. After exiting these plates it enters a set of horizontal plates. These plates are 10 cm long and the electric field between them is $20 \mathrm{~N} / \mathrm{C}$. The field direction is indicated in the diagram at the right.
(A) Label the signs on each plate, the charge that will move through the plates (it is either an electron or a proton), draw the charges path, and label the vertical deflection.
(B) State the direction of the electric field between the left set of plates.
(C) Determine the speed of the moving charge as it exits the hole in the first set of plates.
(D) Determine the vertical deflection in the second set of plates.
A)

B)
C)
D)

50 ELECTRIC FIELD OF POINT CHARGES AND COULOMB'S LAW

30. $4 \mu \mathrm{C} \quad \mathrm{A}$
A)

A spherical conductor has a charge of $4.0 \mu \mathrm{C}$. Point P is located 30 cm to the right of the charge.
(A) How are the charges distributed on a conductor?
(B) Determine the magnitude and direction of the electric field at point P.
A $-0.5 \mu \mathrm{C}$ point charge is inserted at point P.
(C) Determine the magnitude and direction of the force on this charge.

B)

C)
31. The minus signs in the formulas

Objects	Formula with signs	Resulting Interaction
Masses	$-F_{g}=-G \frac{+m_{1}+m_{2}}{r^{2}}$	
Opposite charges	$-F_{E}=k \frac{+q_{1}-q_{2}}{r^{2}}$ or $\Delta-F_{E}=k \frac{-q_{1}+q_{2}}{r^{2}}$	
Like Charges	$+F_{E}=k \frac{+q_{1}+q_{2}}{r^{2}}$ or $+F_{E}=k \frac{-q_{1}-q_{2}}{r^{2}}$	

32. Handling the signs for fields and the forces they create.

Positive E or F_{E} means away (repel) and negative E or F_{E} means toward (attract).
For magnitude use absolute values for charge: $E=k \frac{|q|}{r^{2}} \quad F_{E}=k \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$

(A)	(B)
A) Force of Gravity	B) Force of Electricity

35. Describe the Millikan Oil Drop experiment. Include a diagram, FBD, equations, and state the major findings.
36. Two identical positively charged spheres, each with a mass of 300 g , are suspended by massless strings as shown in the diagram. Determine the charge on each sphere.

37. An electron orbits a proton at a radius of $1.2 \times 10^{-10} \mathrm{~m}$. Determine the speed of the orbiting electron. Assume the orbit to be circular.

51 SUPERPOSITION

38. For the charge configuration shown at the right
(A) Determine the magnitude and direction of the electric field at point P.
(B) Determine the magnitude of the electric potential at point P.
A $-0.30 \mu \mathrm{C}$ charge with a mass of $5.0 \times 10^{-10} \mathrm{~kg}$ is inserted at point P.
(C) Determine the magnitude and direction of the force acting on this charge.
(D) Determine the energy of this charge.

The $-0.30 \mu \mathrm{C}$ charge is released.
(E) Determine the maximum speed acquired by the charge.
(A)

路
\qquad
(C)
(D)
(E)
(B)
41. Determine the net force acting on the $0.10 \mu \mathrm{C}$ charge, which is located at the midpoint between the other two charges in the diagram below.

42. For the charge configuration shown at the right
(A) Determine the magnitude and direction of the electric field at point P .
(B) Determine the magnitude of the electric potential at point P .
A $-0.3 \mu \mathrm{C}$ charge with a mass of $5.0 \times 10^{-10} \mathrm{~kg}$ is inserted at point P.
(C) Determine the magnitude and direction of the force acting on this charge.
(D) Determine the energy of this charge.

The $-0.3 \mu \mathrm{C}$ charge is released.
(E) Determine the maximum speed acquired by the charge.
(A)
(C)
(D)
(E)
(B)
45. Determine the net force acting on the $0.10 \mu \mathrm{C}$ charge, which is located at origin in the diagram below. The marks are 1 m apart.

46. The arrangement forms an equilateral triangle, with sides that are 1 m long.

(A) Determine the electric field at P.
(B) Determine the electric potential at P.
A)
\square
B)
47. Determine the net force acting on the $0.10 \mu \mathrm{C}$ charge, which is located at top of the equilateral triangle shown below. The sides of the triangle are 1 m in length.

48. The arrangement forms a square, with sides that are 1 m long and point P is at the center.

(A) Determine the electric field at point P.
(B) Determine the electric potential at point P.
49. The arrangement forms a square, with sides that are 1 m long. All charges have a magnitude of $0.1 \mu \mathrm{C}$. Determine the electric field at point P, located at the center of the square.

AP Physics 1

50. Four $0.10 \mu \mathrm{C}$ charges occupy the corners of a square with sides of 1.0 m . Determine the net force acting the top right charge.

