52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

1. What is voltage, and what are its units?
2. What are some other possible terms for voltage?
3. Batteries create a potential difference.
(A)
(A) The potential/voltage of a battery is also known as?
(B) Its abbreviation is

(B)	(C)

(C) Its units are
4. Charge carriers
(A)
(A) Which particles are the actual charge carriers in electricity?
(B) Even though this is what really takes place, Physics theory is based on which particle?
(C) Why doesn't it really matter which particle actually moves?

| 10. Electrical devices having resistance. | | |
| :--- | :--- | :--- | :--- | :--- |
| 11. Unless told otherwise, assume the
 resistance of wires to be | | |
| 12. What is a resistor? | | |

53 KIRCHHOFF'S LAWS

19. Visualizing circuits (A) Batteries can be thought of as charge escalators. What do they do to potential in a circuit? (B) What must all the components do to potential so that energy is conserved?	(A)	
20. How can you identify a (A) series circuit? (B) parallel circuit?	(A) Series	
21. Kirchhoff's Rules (A) Loop Rule (B) Junction Rule	(A) Loop Rule	
	(B) Junction Rule	
22. Analyzing potential and current in the two types of circuits.	Series	Parallel
(A) Use loop rule to find the missing voltages in the two circuits at the right. (B) Use junction rule to find the missing currents in the two circuits at the right. (C) What overall patterns regarding current and potential are seen?		
	In series current... In series voltage...	In parallel current... In parallel voltage...
23. Apply the rules to solve for current and potential in the hybrid circuit shown.		

24. Circuit Rule Summary	Series	Parallel
Current		
Voltage		
Resistance	$R_{S}=\sum_{i} R_{i}$	$\frac{1}{R_{P}}=\sum_{i} \frac{1}{R_{i}}$

25. Equivalent resistance:

26. Loop Rule, Potential, and Conservation of Energy
27. Junction Rule, Current, and Conservation of Charge

54 RESISTOR CIRCUITS

28.

	V	I	R	P
ε	12			
R_{1}			1	
R_{2}			2	
R_{3}			3	

29.

	V	I	R	P
$\boldsymbol{\varepsilon}$	12			
R_{1}			1	
R_{2}			2	
R_{3}			3	

30. Compare the series and parallel circuits in the two problems above.
(A) Resistance: Which circuit has the highest resistance, and which has the lowest?
(B) Current: Which circuit has the highest current, and which has the lowest?
(C) Power: Which circuit uses the highest power, and which uses the lowest?
(D) Brightness of light: If the resistors were light bulbs, which would be brightest?

Series	Parallel

31.

	V	I	R	P
ε	6			
R_{1}			2	
R_{2}			2	
R_{3}			2	

32.

	V	I	R	P
\mathcal{E}	6			
R_{1}			2	
R_{2}			2	
R_{3}			2	

33.

In the circuit shown above the emf of the battery is 12 V . The resistances of the resistors are: $R_{1}=2 \Omega, R_{2}=3 \Omega$, $R_{3}=3 \Omega$, and $R_{4}=3 \Omega$.
(A) Determine the total resistance.
(B) Determine the total current.
(C) Determine the power consumed by resistor 1 .
(D) The resistors are acually light bulbs. Rank the brightness of the bulbs.
(E) Bulb 4 burns out.
(F) State if the remaining bulbs get brighter or dimmer.

Use this space for the table.
(A)
(B)
(C)
(D)
(E)

34.	Ammeter	Voltmeter	
(A) What do they measure?			
(B) How are they positioned?			
(C) Why?			
(D) To be ideal, what does their resistance need to be?			

(E) Show the position of an ammeter and voltmeter to measure the current through and voltage drop across R_{4}.
35. Compare the circuits shown below.
36.

In the circuit shown above the emf of the battery is 12 V . The resistances of the resistors are: $R_{1}=3 \Omega, R_{2}=6 \Omega$, $R_{3}=2 \Omega$, and $R_{4}=4 \Omega$.
(A) Determine the total resistance.
(B) Determine the total current.
(C) Add an ammeter and voltmeter to the circuit diagram above in order to measure the current and voltage of resitor 1 .
(D) Determine the power consumed by resistor 1 .
(E) The resistors are acually light bulbs. Rank the brightness of the bulbs.

Use this space for the table.
(A)
(B)
(D)
(E)
37. Circuit design
38. Circuit design

55 REAL BATTERIES, HOME WIRING, AND LIGHT BULBS

| 39. Terminal voltage | $V=\mathcal{E}-I r$ |
| :--- | :--- | and therefore have resistance. The resistance inside a battery is known as internal resistance. Draw the sketch of a real battery shown in class.

41. A battery has an emf of 6.0 V and an internal resistance of 0.10Ω. Determine the terminal voltage if 2.0 A of current runs through the battery.
42. Typically internal resistance is negligible in our problems.
How does this change $V=\mathcal{E}-I r$?
43.

(A) Rearrange the equation $V=\mathcal{E}-I r$ to match the axis of the graph above and the equation of a line, $y=m x+b$.
(B) The slope of the graph is...
(C) The y-intercept...
44. Household wiring
(A) How is your home wired?
(B) Why?
(C) In this type of circuit as you turn more electrical appliances, what happens to total resistance?
(D) What happens to total current and power?
(E) What happens to the temperature of the wires?
(F) How do you protect against fire?
(G) How is the device that protects the circuit wired into the circuit

If internal resistance is negligible
(A)

(B)	(C)

(A)
(B)
(C)
(D)
(E)
(F)
(G)
45. Light bulbs are labeled with their wattage
(A) Light bulbs are also labeled 120 V. Under what circumstances does a 60 W bulb use 60 W.
(B) Wattage is not really fixed for a light. What quantity is fixed in light bulbs?
(A)
(B)
46. Complete the circuit tables below for a 120 W and 240 W bulb that are put into three different circuits.

A USA parallel 120 V circuit				Wired into a series circuit at 120 V					A European parallel 240 V circuit					
	V	I	R	P		V	I	R	P		V	I	R	P
\mathcal{E}	120				\mathcal{E}	120				\mathcal{E}	240			
L_{1}				120	L_{1}					L_{1}				
L_{2}				240	L_{2}					L_{2}				

Wattage in a US parallel circuit lets you calculate the resistance of each light. Resistance is actually the constant quantity.

