\qquad Period \qquad Date \qquad

2D Collisions Practice

1. Two rubber spheres approach each other as shown in the figure, where $\mathrm{m}=2.0 \mathrm{~kg}, \mathrm{M}=4.0 \mathrm{~kg}$, $v=3 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}=5.0 \mathrm{~m} / \mathrm{s}$. If the rubber spheres collide and stick together at the origin,
a) What are the x and y components of the velocity v ' of the balls after the collision?
b) What is the magnitude of the velocity v '?
c) What is the angle θ ?

2. A hokey puck of mass 0.15 kg moves on a frictionless horizontal surface with a speed of $3.5 \mathrm{~m} / \mathrm{s}$ west. It has a glancing collision with another puck initially stationary) of a mass 0.2 kg . After the collision the first puck moves north while the second puck moves 25° south of west.
a) What is the magnitude of the initial momentums x component?
b) Using this, determine the magnitude of the velocity of the puck that was originally at rest after the collision.
c) What is the magnitude of the initial momentums y component?
d) Using this, determine the magnitude of the velocity of original puck after the collision.
3. A 40 kg coconut is filled with lit firecrackers. Once the firecrackers explode, the coconut explodes into 3 pieces. A 20 kg piece flies directly north at $200 \mathrm{~m} / \mathrm{s}$ and another 10 kg piece flies directly east at 150 m / s. What is the veloctity (magnitude and direction) of the remaining 10 kg piece?
4. A 1000 kg car moving west at $10 \mathrm{~m} / \mathrm{s}$ collides inelastically with a 2000 kg SUV that was moving $9 \mathrm{~m} / \mathrm{s}$ south. What velocity (magnitude and direction) would the vehicles have immediately after the collision while they are stuck together?
